A-O Modulators 3.2

AOTF 3.22

E-O Modulators 3.25

Rotators & Isolators 3.29

Photodetectors & PSD 3.35

Laser Apertures 3.50

Shutters 3.51

Laser Detections 3.55

Optical Chopper 3.57

Holography Films 3.58

Spatial Light Modulators 3.59

Laser Safety 3.65

### AN IMTRODUCTION TO ACOUSTO-OPTIC

#### 1- AO HISTORY

Brillouin predicted the light diffraction by an acoustic wave, being propagated in a medium of interaction, in 1922.

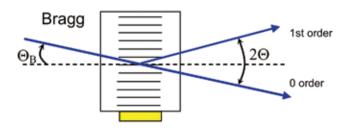
In 1932, Debye and Sears, Lucas and Biquard carried out the of an AOTF. first experimentations to check the phenomena.

The particular case of diffraction on the first order, under a certain angle of incidence, (also predicted by Brillouin), has been observed by Rytow in 1935.

Raman and Nath (1937) have designed a general ideal model of interaction taking into account several orders.

This model was developed by Phariseau (1956) for diffraction Rise time (TR): including only one diffraction order.

At this date, the acousto-optic interaction was only a pleasant laboratory experimentation. The only application was the measurement of constants and acoustic coefficients.


The laser invention has led the development of acousto-optics and its applications, mainly for deflection, modulation and signal processing. Technical progresses in both crystal growth and high frequency piezoelectric transducers have brought valuable benefits to acousto-optic components 'improvements.

#### 2- GLOSSARY

#### Bragg cell:

A device using a bulk acousto-optic interaction (eg. deflectors, modulators, etc...).

"Zero" order,"1st" order:



The zero order is the beam directly transmitted through the cell. The first order is the diffracted beam generated when the laser beam interacts with the acoustic wave.

#### Bragg angle (OB):

The particular angle of incidence (between the incident beam and the acoustic wave) which gives efficient diffraction into a single diffracted order. This angle will depend on the wavelength and the RF frequency.

#### Separation angle (Θ):

The angle between the zero order and the first order.

#### RF Bandwidth ( $\Delta$ F):

For a given orientation and optical wavelength there is a particular RF frequency which matches the Bragg criteria. However, there will be a range of frequencies for which

the situation is still close enough to optimum for diffraction still to be efficient. This RF bandwidth determines, for instance, the scan angle of a deflector or the tuning range

#### Maximum deflection angle ( $\Delta\Theta$ ):

The angle through which the first order beam will scan when the RF frequency is varied across the full RF band-

Proportional to the time the acoustic wave takes to cross the laser beam and, therefore, the time it takes the beam to respond to a change in the RF signal. The rise time can be reduced by reducing the beam's width.

#### Modulation bandwidth (ΔFmod):

The maximum frequency at which the light beam can be amplitude modulated. It is related to the rise time - and can be increased by reducing the diameter of the laser beam.

#### Efficiency (h):

The fraction of the zero order beam which can be diffracted into the "1st" order beam.

#### **Extinction ratio:**

The ratio between maximum and minimum light intensity in the "1st" order beam, when the acoustic wave is "on" and "off" respectively.

#### Frequency shift (F):

The difference in frequency between the diffracted and incident light beams. This shift is equal to the acoustic frequency and can be a shift up or down depending on orientation.

#### Resolution (N):

The number of resolvable points, which a deflector can generate - corresponding to the maximum number of separate positions of the diffracted light beam - as defined by the Rayleigh criterion.

#### RF Power (PRF):

The electrical power delivered by the driver.

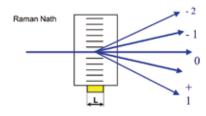
Acoustic power (Pa):

The acoustic power generated in the crystal by the piezoelectric transducer. This will be lower than the RF power as the electro-mechanical conversion ratio is lower than 1.

#### 3- PHYSICAL PRINCIPLES MAIN EQUATIONS

An RF signal applied to a piezo-electric transducer, bonded to a An acousto-optic interaction can be described using wave suitable crystal, will generate an acoustic wave. This acts like a "phase grating", traveling through the crystal at the acoustic velocity of the material and with a acoustic wavelength dependent on the frequency of the RF signal. Any incident laser beam will be diffracted by this grating, generally giving a number of diffracted beams.

#### 3-1 Interaction conditions


A parameter called the "quality factor, Q", determines the interaction regime. Q is given by:

$$Q = \frac{2\pi\lambda_0 L}{n\Lambda^2}$$

where  $\lambda_0$  is the wavelength of the laser beam, n is the refractive index of the crystal, L is the distance the laser beam travels through the acoustic wave and L is the acoustic wavelength.

Q<<1 :This is the Raman-Nath regime. The laser beam is incident roughly normal to the acoustic beam and there are several diffraction orders (...-2 -1 0 1 2 3...) with intensities given by Bessel functions.

Q>>1: This is the Bragg regime. At one particular incidence angle \*B, only one diffraction order is produced - the others are annihilated by destructive interference.



In the intermediate situation, an analytical treatment isn't possible and a numerical analysis would need to be performed by computer.

Most acousto-optic devices operate in the Bragg regime, the common exception being acousto-optic mode lockers and Qswitches.

#### 3-2 Wave vectors constructions

vectors. Momentum conservation gives us :

$$\vec{K}_d = \vec{K}_i + / - \vec{K}$$

 $Ki = 2pni/\lambda_0 - wave vector of the incident beam.$ 

Kd =  $2pni/\lambda_0$  – wave vector of the diffracted beam.

K = 2pF/v - wave vector of the acoustic wave.

Here F is the frequency of the acoustic wave traveling at velocity v. ni and nd are the refractive indexes experienced by the incident and diffracted beams (these are not necessarily the same).

Energy conservation leads to : Fd = Fi +/- F

So, the optical frequency of the diffracted beam is by an amount equal to the frequency of the acoustic wave. This "Doppler shift" can generally be neglected since F<<Fd or Fi, but can be of great interest in heterodyning applications.

Acousto-optic components use a range of different materials in a variety of configurations. These can be heard described by terms such as longitudinal- and shear-mode, isotropic and anisotropic. While these all share the basic principles of momentum and energy conservation, these different modes of operation have very different performances - as shall be seen.

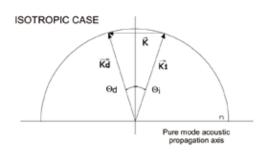
#### 3-3 Characteristics of the diffracted light **Isotropic Interactions**

An isotropic interaction is also referred to as a longitudinalmode interaction. In such a situation, the acoustic wave travels longitudinally in the crystal and the incident and diffracted laser beams see the same refractive index. This is a situation of great symmetry and the angle of incidence is found to match the angle of diffraction. There is no change in polarization associated with the interaction.

These interactions usually occur in homogenous crystals, or in birefringent crystals cut appropriately.

In the isotropic situation, the angle of incidence of the light must be equal to the Bragg angle, QB:

$$\theta_B = \frac{\lambda F}{2v}$$


where  $I = \lambda_0/n$  is the wavelength inside the crystal, v is the acoustic velocity and F is the RF frequency.

Laser Safety

### CHAPTER 3 PHOTONICS

zero order beams is twice the angle of incidence and, therefore, twice the Bragg angle.

$$\theta = \frac{\lambda F}{v}$$



The diffracted light intensity I<sub>1</sub> is directly controlled by the acoustic power P:I

$$I_1 = I_0 \sin^2 \sqrt{\eta}$$
 with  $\eta = \frac{\pi^2}{2\lambda_0^2} M_2 \frac{L}{H} P$ 

Here  $\lambda_0$  is the incident light intensity,  $M_2$  is the acousto-optic figure of merit for the crystal and H and L are the height and length of the acoustic beam. Io is the wavelength of the incident beam.

Diffraction efficiency (relative) is the ratio  $I_1/I_0$ :

$$\frac{I_1}{I_0} = \sin^2 \frac{\pi}{2} \sqrt{\frac{P}{P_0}} \qquad \text{with} \quad P_0 = \frac{\lambda_0^2}{2M_2} \frac{H}{L}$$

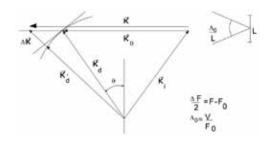
For a given orientation, if the RF frequency is slightly different from that required to match the Bragg criterion, diffraction will still occur. However, the diffraction efficiency will drop. The situation is shown in the figure below, where the acoustic wavevector, K, is longer than the ideal "Bragg" wave-vector, K<sub>0</sub>.

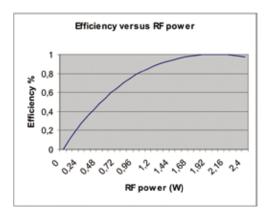
A complicated analysis leads to the result:

$$\frac{I_0}{I_1} = \eta \sin c^2 \sqrt{\eta + \frac{\Delta \dot{\phi}^2}{4}}$$

where  $\Delta \Phi = \Delta K.L$  and is called the "phase asynchronism". In the isotropic case:

$$\Delta \varphi = \frac{\pi \lambda}{v} \frac{\Delta F}{2} \frac{L}{\Lambda_o}$$


The separation angle Q between the first order and At the correct Bragg frequency,  $\Delta\Phi$  =0 (F=Fo) and efficiency is maximum

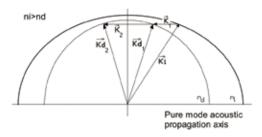

> When  $\Delta\Phi$  increases, diffraction efficiency decreases and will continue to decrease down to zero.

If there is a lower limit on the acceptable diffraction efficiency, then this puts a limit on  $\Delta\Phi$ . This, in turn, implies a maximum DF - and defines the RF bandwidth for the device.

To increase this RF bandwidth, the ratio  $\Lambda_0/L$  (the acoustic divergence) can be increased.

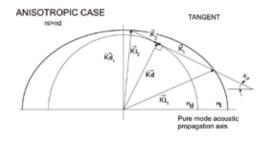
As the RF frequency varies, the diffracted beam's direction changes. This is the basis behind acousto-optic deflectors.






#### **Anisotropic interaction**

In an anisotropic interaction, on the other hand, the refractive indexes of the incident and diffracted beams will be different due to a change in polarization associated with the interaction. This can be seen in the figure below where the acoustic wave vector K1 connects the index curves of the incident and diffracted waves. (K2 simply represents a similar interaction at a very different RF frequency).


The same asymmetry which causes the difference in refractive indexes also causes the acoustic wave to travel in a "shear-mode" and, in the particular example of tellurium dioxide, this results in a drastic reduction in the acoustic velocity.

#### ANISOTROPIC CASE

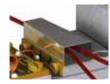


Anisotropic interactions generally offer an increase in efficiency and in both acoustic and optical bandwidth. They are used almost universally in large aperture devices. The reduction in the acoustic velocity, seen in shear-mode tellurium dioxide, lends this material to be used in high resolution deflectors.

The increased bandwidth available from shear-mode devices can be seen most immediately in the figure below where the interaction configuration is chosen so that the acoustic wavevector lies tangential to the diffracted beam's index ellipse.



This means that the length of the acoustic wave-vector can vary quite grossly while only producing small changes in the length of the diffracted beam's wave-vector. So, in this situation,  $\Delta K$  (and, hence,  $\Delta \Phi$ ) is quite insensitive to changes in RF frequency.


Shear-mode interactions are very much more complex to analyze, requiring detailed information on crystal cut, refractive indexes, orientation. However, these interactions have a lot of advantages and most deflectors and all AOTFs will use shearmode interactions. The reduced acoustic velocity makes these devices very much slower than longitudinal-mode units and this can be seen as a disadvantage in some circumstances.

#### 5- CONSTITUTION OF A BRAGG CELL

Although acoustic interactions can be observed in liquids, practical devices use crystals or glasses as the interaction medium, with RF frequencies in the MHz to GHz range.

A piezo-electric transducer generates the acoustic wave when

driven by an RF signal.



The transducer is placed between 2 electrodes. The top electrode determines the active limits of the transducer.

The ground electrode is bonded to the crystal.

The transducer thickness is chosen to match the acoustic frequency to be generated. The height of the electrode H depends on the type of application, and must exceed the laser beam diameter. For a deflector, it is selected in order to collimate the acoustic beam inside the crystal during propagation.

The electrode length L is chosen to give the required bandwidth and efficiency.

The shape of the electrode can be varied for impedance matching or to "shape" the acoustic wave.

An "apodization" of the acoustic signal can be obtained by optimizing the shape of the electrode.

An impedance matching circuit is added to couple the transducer to the driver. Indeed, this circuit is necessary to adapt the Bragg cell to the impedance of the RF source (in general 50 Ohms), to avoid power returned losses. The RF power return loss is characterized with the VSWR of the AO device.

The crystal will generally be AR coated to reduce reflec-tions from the optical surfaces. Alternatively, the faces can be cut to Brewster's angle for a specific wavelength. A variety of different materials can be used. All have their own advantages and disadvantages.



## MODULATORS & FIXED FREQUENCY **SHIFTERS**

Acousto-optic modulators are used to vary and control laser beam intensity. A Bragg configuration gives a single first order output beam, which intensity is directly linked to the power of RF control signal. The rise time of the modulator is simply deduced by the necessary time for the acoustic wave to travel through the laser beam. For highest speeds the laser beam will be focused down, forming a beam waist as it passes through the modulator. The first order beam of a modulator is frequency shifted by the amount of the RF carrier frequency: it acts like as fixed frequency shifter.





| Model                    | Material     | Wavelength<br>nm | Aperture mmxmm | Freq(Shift)<br>MHz | Polarisation | Rise Time ns | Modul.BW<br>MHz(Am) | Efficiency<br>% |
|--------------------------|--------------|------------------|----------------|--------------------|--------------|--------------|---------------------|-----------------|
| MQ200-A1.5-244.266-B     | Fused silica | 244-266          | 1.5 x 2        | 200                | Linear       | 60           | 8                   | 85              |
| MQ180-A0.3-244.266-B     | Fused silica | 244-266          | 0.3 x 1 1      | 80                 | Linear       | 12           | 40                  | 85              |
| MQ200-A1.5-266.300       | Fused silica | 266-300          | 1.5 x 2        | 200                | Linear       | 60           | 8                   | 85              |
| MQ180-A0.2-266.300       | Fused silica | 266-300          | 0.2 x 1        | 180                | Linear       | 10           | 48                  | 85              |
| MQ180-A0,2-UV            | Fused silica | 325-425          | 0.2 x 2        | 180                | Linear       | 10           | 48                  | 80              |
| MQ110-A1-UV              | Fused silica | 25-425           | 1 x 2          | 110                | Linear       | 15           | 32                  | 85              |
| MQ110-A3-UV              | Fused silica | 325-425          | 3 x 3          | 110                | Linear       | 50           | 10                  | 90              |
| MQ240-A0.15-UV           | Fused silica | 325-425          | 0.15 x 1       | 240                | Linear       | 6            | 80                  | 70              |
| MTS130-A3-400.442        | TeO2         | 400-442          | 3 x 3          | 130                | Linear       | 1000         | 0,4                 | 85              |
| MQ180-A0.2-VIS           | Fused silica | 440-650          | 0.2 x 1        | 180                | Linear       | 10           | 48                  | 70              |
| MT350-A0.2-VIS           | TeO2         | 450-700          | 0.2 x 1        | 350                | Linear       | 5            | 96                  | 80              |
| MT250-A0.5-VIS           | TeO2         | 450-700          | 0.5 x 2        | 250                | Linear       | 6            | 80                  | 80              |
| MT200-A0,5-VIS           | TeO2         | 450-700          | 0.5 x 2        | 200                | Linear       | 8            | 60                  | 85              |
| MT110-A1-VIS             | TeO2         | 450-700          | 1 x 2          | 110                | Linear       | 15           | 32                  | 85              |
| MT110-A1.5-VIS           | TeO2         | 450-700          | 1.5 x 2        | 110                | Linear       | 50           | 9                   | 85              |
| MT80-A1-VIS              | TeO2         | 450-700          | 1 x 2          | 80                 | Linear       | 23           | 21                  | 85              |
| MT80-A1.5-VIS            | TeO2         | 450-700          | 1.5 x 2        | 80                 | Linear       | 50           | 9                   | 85              |
| MTS110-A3-VIS            | TeO2         | 458-670          | 3 x 3          | 110                | Linear       | 1000         | 0.4                 | 85              |
| MTS40-A2.5-VIS           | TeO2         | 458-670          | 2.5 x 2.5      | 40                 | Linear       | 1000         | 0.4                 | 85              |
| MTS40-A2.5-IR            | TeO2         | 780-900          | 2.5 x 2.5      | 40                 | Linear       | 1000         | 0.4                 | 85              |
| MT110-A1.5-IR-Hk (Ti:sa) | TeO2         | 690-1064         | 1.5 x 2        | 110                | Linear       | 50           | 9                   | 80              |
| MT350-A0.2-IR            | TeO2         | 700-1100         | 0.2 x 1        | 350                | Linear       | 5            | 96                  | 80              |
| MT250-A0.5-IR            | TeO2         | 700-1100         | 0.2 x 2        | 250                | Linear       | 6            | 80                  | 80              |
| MT200-A0,5-IR            | TeO2         | 700-1100         | 0.5 x 2        | 200                | Linear       | 8            | 60                  | 85              |
| MT110-A1-IR              | TeO2         | 700-110          | 1 x 2          | 110                | Linear       | 15           | 32                  | 85              |
| MT110-A1.5-IR            | TeO2         | 700-1100         | 1.5 x 2        | 110                | Linear       | 50           | 9                   | 85              |
| MT80-A1-IR               | TeO2         | 700-1100         | 1 x 2          | 80                 | Linear       | 23           | 21                  | 85              |
| MT80-A1.5-IR             | TeO2         | 700-1100         | 1.5 x 2        | 80                 | Linear       | 50           | 9                   | 85              |
| MT200-A0.4-1064          | TeO2         | 1000-1100        | 0.4 x 1        | 200                | Linear       | 8            | 60                  | 80              |
| MT200-A0.2-1064          | TeO2         | 1000-1100        | 0.2 x 1        | 200                | Linear       | 8            | 60                  | 80              |
| MT110-A1-1064            | TeO2         | 1000-1100        | 1 x 2          | 110                | Linear       | 15           | 32                  | 85              |
| MT80-A1-1064             | TeO2         | 1000-1100        | 1 x 2          | 80                 | Linear       | 23           | 21                  | 85              |
| MT80-A1.5-1064           | TeO2         | 1000-1100        | 1.5 x 2        | 80                 | Linear       | 50           | 9                   | 85              |
| MTS80-A3-1064Ac          | TeO2         | 1064             | 3 x 3          | 80                 | Linear       | 500          | 1                   | 85              |
| MQ40-A3-L1064-W          | SiO2         | 1064             | 3 x 3          | 40                 | Linear       | 120          | 4                   | 80              |
| MQ40-A3-S1064-W          | SiO2         | 1064             | 3 x 3          | 40                 | Random       | 180          | 2.5                 | 80              |
| MGAS40-A1                | Dopped Glass | 1300-160         | 1 x 2          | 40                 | Random       | 50           | 10                  | 85              |
| MGAS80-A1                | Dopped Glass |                  | 1 x 2          | 80                 | Random       | 50           | 10                  | 85              |
| MGAS110-A1               | Dopped Glass |                  | 1 x 2          | 110                | Random       | 25           | 20                  | 85              |
| MG40-A6-9300             | germanium    | 9300             | 6 x 10         | 40                 | Linear       | 120          | 4                   | 75              |
| MG40-A8-9300             | germanium    | 9300             | 8 x 10         | 40                 | Linear       | 120          | 4                   | 75              |
| MG40-A6-10600            | germanium    | 10600            | 6 x 10         | 40                 | Linear       | 120          | 4                   | 75              |
| MG40-A8-10600            | germanium    | 10600            | 8 x 10         | 40                 | Linear       | 120          | 4                   | 75              |

# FIXED FREQUENCY DRIVERS

These drivers based on quartz oscillators, produce a fixed RFfrequency signal. Drivers can be provided at any frequency from 10 to 3 GHz. All models use crystal controlled oscillators.

The RF output can be externally modulated. The settling time varies from 2 ns to 100 ns depending on the fixed frequency and RF power.



| Model          | Carrier Frequency | Max RF<br>Power   | Rise<br>Fall/Time | Video In     | Exctinction Ratio | Power<br>Supply          | Class |
|----------------|-------------------|-------------------|-------------------|--------------|-------------------|--------------------------|-------|
| MODA40-1W/2W   | 40 MHz            | 1 or 2 W /50 Ω    | < 20 ns           | 0-5 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA40-50W     | 40 MHz            | 50 or 70 W / 50 Ω | < 50 ns           | 0-5 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA80-1W/2W   | 80 MHz            | 1 or 2 W /50 Ω    | < 10 ns           | 0-5 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA80-4W/10W  | 80 MHz            | 4 or 10 W /50 Ω   | < 10 ns           | 0-5 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA110-1W/2W  | 110 MHz           | 1 or 2 W /50 Ω    | < 8 ns            | 0-5 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA110-4W/10W | 110 MHz           | 4 or 10 W /50 Ω   | < 8 ns            | 0-5 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA180-1W/2W  | 180 MHz           | 1 or 2 W /50 Ω    | < 5 ns            | 0-1 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA180-4W/10W | 180 MHz           | 4 or 10 W /50 Ω   | < 5 ns            | 0-1 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA200-1W/2W  | 200 MHz           | 1 or 2 W /50 Ω    | < 3 ns            | 0-1 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA250-1W/2W  | 250 MHz           | 1 or 2 W /50 Ω    | < 3 ns            | 0-1 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |
| MODA350-1W/2W  | 350 MHz           | 1 or 2 W /50 Ω    | < 3 ns            | 0-1 V / 50 Ω | 45dB              | 24 VDC<br>or 110/230 VAC | Α     |

#### **MULTI CHANNEL AOMs**

| Model                | Material     | Number of channels | Wavelength<br>nm | Aperture mmxmm | Freq(Shift)<br>MHz | Polarisation | Rise Time ns | Modul.BW<br>MHz(AM) | Efficiency % |
|----------------------|--------------|--------------------|------------------|----------------|--------------------|--------------|--------------|---------------------|--------------|
| MT65-B20A1.5-1064-4x | TeO2         | 4                  | 1064             | 1.5 x 1.5      | 65                 | Linear       | 160          | 3                   | 85           |
| MT200-A0.5-VIS-5x    | TeO2         | 5                  | 450-700          | 0.5 x 1        | 200                | Linear       | 10           | 48                  | 85           |
| MQ200-A0.5-UV-16x    | Fused silica | 16                 | 355              | 0.5 x 1        | 200                | Linear       | 36           | 13                  | 85           |

#### **Pulses Pickers**

A pulse picker is an electrically controlled optical switch used for extracting single pulses from a fast pulse



#### TeO2 General purpose Pulse Pickers

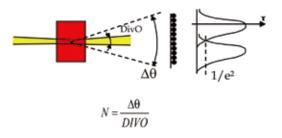
| Model            | Wavelength<br>nm | Aperture<br>mmxmm | Polarisation | Beam<br>diameter<br>mm | Rise Time<br>ns | Max Repetition rate<br>with Duty cycle<br>< 1/10 MHz | Separation angle<br>(0-1)<br>mrd | Efficiency<br>% |
|------------------|------------------|-------------------|--------------|------------------------|-----------------|------------------------------------------------------|----------------------------------|-----------------|
| MT200-A0.5-800   | 700-950          | 0.5 x 1           | Linear       | 0.06 - 0.3             | 10 - 48         | 3.3 - 0.69                                           | 38 @800nm                        | 75 - 85         |
| MT200-A0.5-1064  | 980-1100         | 0.4 x 1           | Linear       | 0.09 - 0.3             | 15 - 48         | 2.2 - 0.69                                           | 50.6 @1064nm                     | 75 - 85         |
| MT250-A0.12-800  | 700-950          | 0.12 x 1          | Linear       | 0.04 - 0.1             | 6 - 16          | 5.5 - 2                                              | 47.6 @800nm                      | 70 - 85         |
| MT250-A0.12-1064 | 980-1100         | 0.12 x 1          | Linear       | 0.05 - 0.1             | 8 - 16          | 4.1 - 2                                              | 63.3 @1064nm                     | 70 - 85         |

#### SiO2 High Damage Threshold Pulse Pickers

| Model           | Wavelength<br>nm | Aperture<br>mmxmm | Polarisation | Beam<br>diameter<br>mm | Rise Time<br>ns | Max Repetition rate with<br>Duty cycle < 1/100<br>KHz | Separation angle (0-1) | Efficiency<br>% |
|-----------------|------------------|-------------------|--------------|------------------------|-----------------|-------------------------------------------------------|------------------------|-----------------|
| MQ80-A0.7-1064  | 1000-1100        | 0.7 x 1           | Linear       | 0.3 - 0.5              | 33 - 55         | 100 - 60                                              | 4.3 @1064nm            | 75 - 85         |
| MQ150-A0.3-1064 | 1000-1100        | 0.3 x 1           | Linear       | 0.08 - 0.2             | 9 - 22          | 370 - 150                                             | 26.8 @1064nm           | 50 - 70         |
| MQ80-A0.7-1064  | 1000-1100        | 0.7 x 1           | Linear       | 0.3 - 0.5              | 33 - 55         | 100 - 60                                              | 4.3 @1064nm            | 75 - 85         |
| MQ150-A0.3-1064 | 1000-1100        | 0.3 x 1           | Linear       | 0.08 - 0.2             | 9 - 22          | 370 - 150                                             | 26.8 @1064nm           | 50 - 70         |

## AN INTRODUCTION TO AO DEFLECTORS

#### **Deflectors**


This component is used to deflect the light beam.

In most applications, a high resolution is requested. For this purpose, one uses large-sized crystals (up to 30 mm or more) in order to work with large beam diameters, decrease optical divergence and increase resolution.

#### Resolution

Static resolution N

Static Resolution of an AOD is defined as the number of distinct directions that can have the diffracted beam.



The center of two consecutive points will be separated by the laser beam diameter (at 1/e²) in the case of a TEM00 beam.

ΔΘ: deflection angle range

DIVO: laser beam divergence

$$Q = \frac{2\pi\lambda_0 L}{n\Lambda^2}$$

for a TEMoo laser beam

ΔF: AO frequency range

Φ: beam diameter (1/e²)

V: acoustic velocity

#### Access time

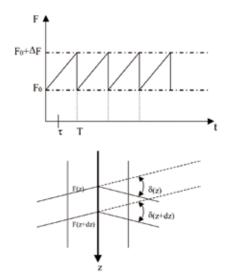
$$T_a = \frac{\Phi}{V}$$

Ta is called access time of the deflector. It corresponds to the necessary time for the acoustic wave to travel through the laser beam and thus to the necessary time for the deflector to commutate from one position to another one.

A deflector is often characterized with the time x bandwidth product  $T_a \times \Delta F$ .

#### **Dynamic resolution Nd**

When the field of the frequencies does not consist any more of discrete values but of a continuous sweeping, it is necessary to define the dynamic resolution, which takes account of the "gradient" of frequencies.


In the case of a linear frequency sweeping:

In Z=O (at the crystal's entry), the frequency F is equal to:

$$Q = \frac{2\pi\lambda_0 L}{n\Lambda^2}$$

In Z, the frequency is equal to

$$F = F_0 + \frac{\Delta F}{T}t - \frac{\Delta F}{T}\frac{Z}{V}$$



The angle of deviation  $(\delta)$  is now a function of the distance (z) and of time (t).

$$\begin{split} \delta &= \delta(Z,t) = \frac{\lambda F}{V} = \frac{\lambda}{V} (F_0 + \frac{\Delta F}{T} (t - \frac{Z}{V})) \\ d\delta &= \frac{\lambda}{V} (\frac{\partial F}{\partial t} dt + \frac{\partial F}{\partial Z} \vec{a}t) \end{split}$$

In z and z+dz, the angle of deviation is not the same one. There is focusing, in only one plan, of the diffracted beam. It is significant to notice this effect of cylinder lens, inter-vening during sequential sweeping (television with raster scan, printing...).

Equivalent cylindrical focal length:

$$F_{Cyl} = \alpha^2 \frac{V}{\lambda \frac{dF}{dI}}$$

-dF/dt: frequency modulation slope

-V: acoustic velocity

-a: parameter depending on beam profile

(=1 for rectangular shape, about 1.34 for TEM<sub>00</sub>)

The dynamic resolution translates a consecutive reduction in the number of points resolved for this purpose.

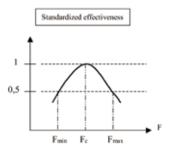
It can be written versus static resolution as:

$$N_d = N(1 - \frac{T_a}{T}) + 1$$

- Nd: dynamic resolution - N : static resolution

- Ta : access time

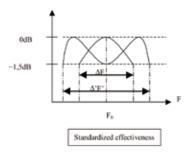
- T : sweeping time from Fmin to Fmax


#### Examples:

| N    | Ta (ms) | T (ms) | Nd  |
|------|---------|--------|-----|
| 1000 | 10      | 50     | 800 |
| 2500 | 50      | 50     | 1   |

#### Efficiency and bandwidth

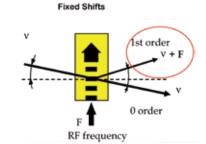
The bandwidth is limited to an octave to avoid the overlap of orders 1 and 2.

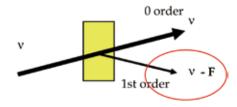

The efficiency curve versus frequency has the following shape for isotropic interaction:

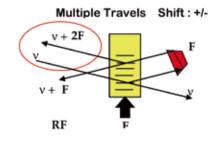


Some applications require a quasi-constant efficiency on all the bandwidth. This can be obtained by decreasing width (I) of the ultrasonic beam, but with the detriment of the maximum efficiency.

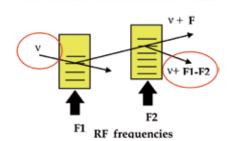
Particular case of anisotropic interaction: the bandwidth of the anisotropic interaction can be increased compared with isotropic interaction.


With specific interaction angles, there can be two synchronism frequencies to match the Bragg conditions, so that the deflection angle range can be broaden with good efficiency





#### **Frequency Shifters**

These components use the modification of frequency of the diffracted light. (Fd=Fi+/-F) All the applications using optical heterodyning or Doppler effect are using this property.


Note: the frequency shifter is also a modulator as well as a deflecto







Low Shifts Shift: +/- (F1-F2)



## CHAPTER 3 PHOTONICS **D**EFLECTORS & VARIABLE FREQUENCY

A Bragg configuration gives a single first order output beam, which intensity is directly linked to the power of RF control signal, and which angle is directly linked to the RF frequency. By varying the frequency, the output laser beam angle is modified. A deflector is used to scan a laser beam over a range of angles, or to control with accuracy the output angle of the laser

By varying the frequency, the first order beam is also frequency shifted by the amount of the RF carrier frequency: it acts like a variable frequency shifter.

The main parameters to qualify a deflector are 1.Deflection angle range and 2.Resolution. The deflection angle range is the maximum angle variation of the laser beam: it is linked to the frequency range of the device.

The resolution of a deflection is the number of distinct directions which can be ad-dressed by the deflector : it is linked to the deflection angle range and laser divergence.

Two deflectors can be used in series and at right angles to give full two-dimensional scanning.



#### **APPLICATIONS**

| Model              | Material    | Wavelength<br>nm | Aperture mmxmm | Freq(Shift)<br>MHz | Polarisation | Resolution    | Deflecion range | Efficiency % |
|--------------------|-------------|------------------|----------------|--------------------|--------------|---------------|-----------------|--------------|
| DTSX-250           | TeO2        | 350-1600         | 4.5 x 4.5      | f(λ)               | Linear       | 300@633nm     | 48@633nm        | > 70         |
| DTSX-400           | TeO2        | 350-1600         | 7.5 x 7.5      | f(λ)               | Linear       | 500@633nm     | 48@633nm        | > 70         |
| DTSXY-250          | 2 Axis TeO2 | 350-1600         | 4.5 x 4.5      | f(λ)               | Linear       | 300x300@633nm | 41 x 41@532nm   | > 45         |
| DTSXY-400          | 2 Axis TeO2 | 350-1600         | 7.5 x 7.5      | f(λ)               | Linear       | 500x500@633nm | 41 x 41@532nm   | > 45         |
| DT230-B120A0.5-UV  | TeO2        | 400-450          | 0.5 x 17.5     | 230+/-60           | Linear       | 500           | 11.4@400nm      | > 50         |
| DT230-B120A0.5-VIS | TeO2        | 450-670          | 0.5 x 17.5     | 230+/-60           | Linear       | 500           | 15@532nm        | > 50         |

| Model                 | Material     | Wavelength nm | Aperture mmxmm | Freq(Shift)<br>MHz | Polarisation  | Resolution T∆F | Deflecion angle range | Efficiency<br>% |
|-----------------------|--------------|---------------|----------------|--------------------|---------------|----------------|-----------------------|-----------------|
| MQ110-B50A1-266.300   | Fused Silica | 266-300       | 1 x 2          | 110+/-25           | Linear        | 16             | 2.2@226nm             | > 60            |
| MQ110-B50A1-UV        | Fused Silica | 325-425       | 1 x 2          | 110+/-25           | Linear        | 16             | 3@355nm               | > 60            |
| MT225-B50A0.5-400.442 | TeO2         | 400-442       | 0,5 x 2        | 200+/-25           | Linear/random | 23             | 5.4 @458nm            | > 80            |
| MT200-B100A0.5-VIS    | TeO2         | 450-700       | 0,5 x 2        | 200+/-50           | Linear/random | 47             | 12.6@532nm            | > 60@633nm      |
| MT110-B50A1-VIS       | TeO2         | 450-700       | 1 x 2          | 110+/-25           | Linear/random | 23             | 6.3@532nm             | > 60@633nm      |
| MT110-B50A1.5-VIS     | TeO2         | 450-700       | 1,5 x 2        | 110+/-25           | Linear/random | 23             | 6.3@532nm             | > 60@633nm      |
| MT80-B30A1-VIS        | TeO2         | 450-700       | 1 x 2          | 80+/-15            | Linear/random | 14             | 3.8@532nm             | > 65            |
| MT80-B30A1.5-VIS      | TeO2         | 450-700       | 1,5 x 2        | 80+/-15            | Linear/random | 14             | 3.8@532nm             | > 65            |
| MT225-B100A0.5-800    | TeO2         | 750-850       | 0,5 x 2        | 225+/-50           | Linear/random | 47             | 18.6 @785nm           | > 60            |
| MT200-B40A1-IR        | TeO2         | 700-1100      | 1 x 2          | 200+/-20           | Linear/random | 19             | 7.4 @800nm            | > 70@785nm      |
| MT350-B120A0.2-IR     | TeO2         | 700-1100      | 0,2 x 1        | 350+/-60           | Linear/random | 28             | 22.8@800nm            | > 60            |
| MT250-B100A0.5-IR     | TeO2         | 700-1100      | 0,5 x 2        | 250+/-50           | Linear/random | 47             | 19@800nm              | > 60            |
| MT200-B100A0.5-IR     | TeO2         | 700-1100      | 0,5 x 2        | 200+/-50           | Linear/random | 47             | 19@800nm              | > 60@785nm      |
| MT110-B50A1-IR        | TeO2         | 700-1100      | 1 x 2          | 110+/-25           | Linear/random | 23             | 9.5@800nm             | > 60@785nm      |
| MT110-B50A1.5-IR      | TeO2         | 700-1100      | 1,5 x 2        | 110+/-25           | Linear/random | 23             | 9.5@800nm             | > 60@785nm      |
| MT80-B30A1-IR         | TeO2         | 700-1100      | 1 x 2          | 80+/-15            | Linear/random | 14             | 5.7@800nm             | > 70@785nm      |
| MT80-B30A1.5-IR       | TeO2         | 700-1100      | 1,5 x 2        | 80+/-15            | Linear/random | 14             | 5.7@800nm             | > 70@765nm      |
| MT200-B100A0.4-1064   | TeO2         | 980-1100      | 0,4 x 2        | 200+/-50           | Linear/random | 47             | 25.3@1064nm           | > 35            |
| MT200-B100A0.2-1064   | TeO2         | 980-1100      | 0,2 x 1        | 200+/-50           | Linear/random | 47             | 25.3@1064nm           | > 60            |
| MT110-B50A1-1064      | TeO2         | 980-1100      | 1 x 2          | 110+/-25           | Linear/random | 23             | 12.6@1064nm           | > 55            |
| MT110-B30A1.5-10064   | TeO2         | 960-1100      | 1,5 x 2        | 110+/-15           | Linear/random | 14             | 7.6@1064nm            | > 60            |
| MT80-B30A1-1064       | TeO2         | 980-1100      | 1 x 2          | 80+/-15            | Linear/random | 14             | 7.6@1064nm            | > 65            |
| MT80-B30A1.5-1064     | TeO2         | 980-1100      | 1,5 x 2        | 80+/-15            | Linear/random | 14             | 7.6@1064nm            | > 65            |

# ASSOCIATED RF DRIVERS FOR DEFLECTORS & AGILE FREQUENCY SHIFTERS

#### VCO and DDS based

#### **VCO** drivers

(Voltage Controlled Oscillator)

These drivers are suitable for general purpose applications (raster scan, or random access...). The VCO can be modulated (amplitude) from an external signal.



The frequency is externally controlled by an analog signal.

An external medium power amplifier will be required to generate the RF power levels required by the AO device.

#### **VCO DRIVERS**

| Model      | Frequency<br>Range                                                                       | Max RF Power | Sweeping<br>Time | Video In                 | Frequency<br>Control       | Frequency<br>Step | Power<br>Supply             |
|------------|------------------------------------------------------------------------------------------|--------------|------------------|--------------------------|----------------------------|-------------------|-----------------------------|
| DRFA10Y-XX | 40-100 MHz<br>60-150 MHz<br>80-200 MHz<br>140-300 MHz<br>190-350 MHz<br>Other on request | Nom<br>0 dBm | 1 µs             | analog<br>0-5 V<br>50 Ω* | analog 0-10 V<br>/ 1 Kohms | continuous        | 24 VDC<br>or 110/230<br>VAC |

#### **ULTRA FAST VCO DRIVER**

| Model       | Frequency<br>Range | Max RF Power | Sweeping<br>Time | Video In                   | Frequency<br>Control       | Frequency<br>Step | Power<br>Supply             |
|-------------|--------------------|--------------|------------------|----------------------------|----------------------------|-------------------|-----------------------------|
| DRFA1.5Y-XX | 85-135 MHz         | Nom<br>0 dBm | 150 ns           | analog<br>0-5 V<br>50 O*** | analog 0-10 V<br>/ 1 Kohms | continuous        | 24 VDC<br>or 110/230<br>VAC |

#### **DDS** drivers

(Direct Digital Synthesizer)



To get a high resolution driver with fast switching time, We are has designed direct digital synthetisers based on monolithic IC circuits. 3 models have already been released, and different units can be designed to specific requirements.

These models offer high frequency accuracy and stability and extremely fast switching times, generally of a few tens of nano-seconds. The DAC circuits have been designed with utmost care to obtain clean RF signals, with minimum spurious noise.

#### **ULTRA FAST VCO DRIVER**

| O-110117101 V | JEHRATIAN TOO BATELA |               |                  |                            |      |                   |                   |                             |  |
|---------------|----------------------|---------------|------------------|----------------------------|------|-------------------|-------------------|-----------------------------|--|
| Model         | Frequency<br>Range   | Max RF Power  | Sweeping<br>Time | Video In                   |      | quency<br>ontrol  | Frequency<br>Step | Power<br>Supply             |  |
| DRFA1.5Y-XX   | 85-135 MHz           | Nom<br>0 dBm  | 150 ns           | analog<br>0-5 V<br>50 Ω*** |      | g 0-10 V<br>Kohms | continuous        | 24 VDC<br>or 110/230<br>VAC |  |
| Model         | Control Mod          | de Interface  | D                | esigned for                |      | AM                | Control           | Power supply                |  |
| USB-CTRL-DDS  | USB                  | Windows XP/NT | 1 or 2 D         | DSA 15 to 31               | bits | Analo             | g or Digital      | Through USB                 |  |

#### Power amplifiers

Our acousto-optic amplifiers are linear with large bandwidth and medium power. The models below cover a variety of bandwidths from 1MHz to 3 GHz. Output powers up to 80 W are available. Each amplifier is supplied with its heat sink and all are stable and reliable under all conditions. For High power amplifiers, we propose models up to 500 W CW.

| Model     | Frequency<br>Range | Gain nom | Output power | Flatness   | Power<br>Supply |
|-----------|--------------------|----------|--------------|------------|-----------------|
| AMPA-B-30 | 20-450 MHz         | 34 dB    | 1 Watt       | +/- 0.5 dB | 24 VDC          |
| AMPA-B-33 | 20-600 MHz         | 40 dB    | 2 watts      | +/- 0.5 dB | 24 VDC          |
| AMPA-B-36 | 20-210 MHz         | 40 dB    | 4 watts      | +/- 1 dB   | 24 VDC          |
| AMPA-B-40 | 20-210 MHz         | 41 dB    | 10 watts     | +/- 1 dB   | 24 VDC          |

# POWER AMPLIFIERS VARIABLE FREQUENCY SOURCES

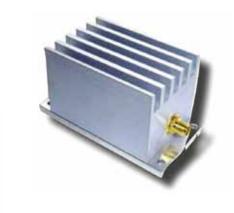
#### **RF** Power amplifiers

AA's acousto-optic amplifiers are linear with large bandwidth and medium power.he models below cover a variety of bandwidths from 1MHz to 3 GHz. Output powers up to 80 W are available. Each amplifier is supplied with its heat sink and all are stable and reliable under all conditions. For High power amplifiers, AA proposes models up to 500 W CW.



| Model     | Frequency Range                | Gain nom | Output Power | Flatness    | Power Supply |
|-----------|--------------------------------|----------|--------------|-------------|--------------|
| AMPA-B-30 | 20-450 MHz                     | 34 dB    | 1 watt       | +/- 0.5 dB  | 24 VDC       |
| AMPA-B-34 | 20-300 MHz                     | 36 dB    | 2.5 watts    | +/- 0.75 dB | 24 VDC       |
| AMPA-B-36 | 20-210 MHz                     | 40 dB    | 4 watts      | +/- 1 dB    | 24 VDC       |
| AMPA-B-40 | 20-210 MHz                     | 41 dB    | 10 watts     | +/- 1 dB    | 24 VDC       |
| AMPA-B-43 | 60-105, 110-150<br>150-210 MHz | 44 dB    | 20 watts     | +/- 0.75 dB | 24 VDC       |
| AMPA-B-47 | 35-45 MHz                      | 48 dB    | 50 watts     | +/-0.75 dB  | 24 VDC       |

DDS USB controller v1.00

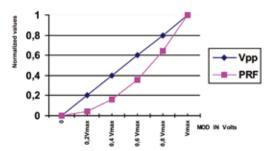

#### **USB** controller for DDSPA

This simple tool allows user to control its DDS driver thanks to its computer with a USB link.

The provided software allows user to set manually frequency and power (option

8 bits) to the corresponding synthesizer.






# AN INTRODUCTION TO RF DRIVERS

#### **Output RF power**

The output RF power PRF through a 50 W load (R) is related to ANALOG MODULATION (0-Vmax) the peak to peak signal amplitude Vpp by the relation :

$$P_{RF} = \frac{V_p^2}{8R} = \frac{V_p^2}{400}$$



#### VSWR (voltage stationary wave ratio)

This parameter gives an information on the reflected and transmitted RF power to a system.

In order to have the best matching between an acoustooptic device and a radio frequency source/amplifier, one will have to optimize both impedance matching on the source and the driver. Generally, input impedance of an acousto-optic device is fixed to 50 Ohms as well as the output impedance of the driver/amplifier.

| VSWR      | Reflected POWER |
|-----------|-----------------|
| 1.002 /1  | 0.0001 %        |
| 1.068 / 1 | 0.1 %           |
| 1.15 / 1  | 0.5 %           |
| 1.22 / 1  | 1 %             |
| 1.5 / 1   | 4 %             |
| 2/1       | 11 %            |
| 2.5 / 1   | 18 %            |
| 3 / 1     | 25 %            |

#### **Amplitude Modulation**

#### **ANALOG MODULATION (0-Vmax)**

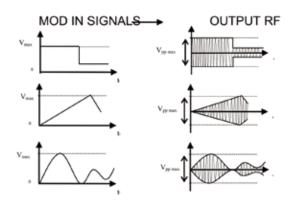
The analog modulation input of your driver controls linearly and continuously the output RF amplitude of the signal from 0 to maximum level.

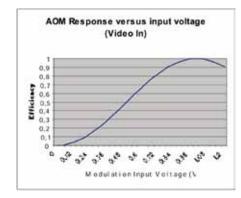
When applying 0 V on "MOD IN", no output signal When applying Vmax on "MOD IN", maximum output signal level

The output RF waveform is a double-sideband amplitude modulation carrier.

Vmax can be adjusted at factory from 1 V to 10 V.

#### **Amplitude Modulation**


The analog modulation input of your driver controls linearly and continuously the output RF amplitude of the signal from 0 to maximum level.

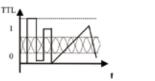

When applying 0 V on "MOD IN", no output signal

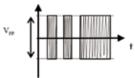
When applying Vmax on "MOD IN", maximum output sig-

The output RF waveform is a double-sideband amplitude modulation carrier.

Vmax can be adjusted at factory from 1 V to 10 V.



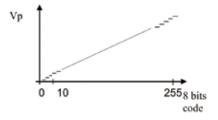




#### TTL MODULATION (ON/OFF)

The TTL modulation input of your driver is compatible with standard TTL signals. It allows the driver to be driven ON and OFF.

- When applying a "0" level (< 0.8 V) on "MOD IN", no output signal.
- When applying "1" level (> 2.4 V) on "MOD IN", maximum output signal level.

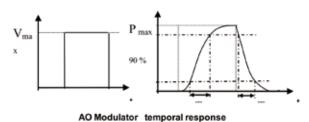
It will be noted that a TTL modulation input can be piloted with an analog input signal.

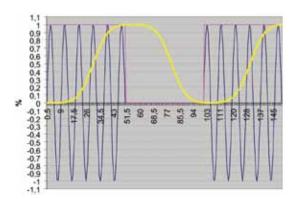





#### **Digital 8 bit AMPLITUDE MODULATION**

A byte (8 bit //) controls the amplitude of the output RF signal. A D/A converter converts the 8 bits command (N) on an analog signal which controls linearly the output amplitude. 256 levels are available


- When N=00000000, no output RF signal
- When N=11111111, maximum output level




#### Rise and Fall Time

The rise time Tr and fall time Tf of your driver specified in your test sheet corresponds to the necessary time for the output RF signal to rise from 10 % to 90 % of the maximum amplitude value, after a leading edge front. This time is linked to carrier frequency and RF technology.

The class A drivers from AA, offer the best rise/fall time performances.





#### **EXTINCTION RATIO**

The extinction ratio of your driver specified in the test sheet is the ratio between the maximum output RF level (MOD IN = max value) with the minimum output level (MOD IN = MIN value). A bad modulation input signal can be responsible for the extinction ratio deterioration.

Extinction ratio = 
$$10 \log(\frac{P_{\text{max}}}{P_{\text{min}}}) = 20 \log(\frac{V_{pp \text{ max}}}{V_{pp \text{ min}}})$$
 (dB)

Shutters

#### **FREQUENCY CONTROLS**

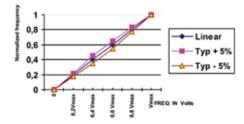
#### **ANALOG CONTROL (0-Vmax)**

The analog frequency control input of your driver controls linearly and continuously the output RF frequency of the signal from Fmin (minimum frequency) to Fmax (maximum frequency).

The minimum and maximum frequencies are set at factory, and can be slightly adjusted with potentiometers "OFF-SET" and "GAIN".

The typical linearity of the frequency versus input command for standard VCOs is typically +/- 5%.

#### Sweeping time (VCO)


This is the maximum necessary time to sweep frequency from minimum to maximum, or maximum to minimum.

This value will be taken as the maximum random access time, though it depends on the frequency step.

When applying 0 V on "FREQ IN", Frequency = F min

When applying Vmax on "FREQ IN", Frequency = F max

(Standard frequency control input: 0-10 V / 1KW).

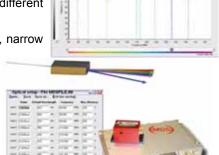


#### 8 BITS FREQUENCY CONTROL (15, 23, 31b)

A byte (8 bit //) controls the frequency of the output RF signal. A D/A converter converts the 8 bits command (N) on an analog signal which controls linearly the output frequency.

256 steps are available: refer to your test sheet for pin connexions.

- When N=00000000, RF signal frequency = F minimum
- When N=11111111, RF signal frequency = F maximum


# POLYCHROMATIC MODULATORS & ASSOCIATED RF DRIVERS

The AOTFnC is a special acousto-optic tunable filter which uses the anisotropic interaction inside a tellurium dioxidecrystal to ontrol independently or simultaneously different lines from an incoming UV or VISIBLE laser light (White laser, Ar+, Kr+, HeNe, DPSS, Dye...).

Up to 8 distinct lines can be mixed and separately modulated in order to generate different colorimetric patterns.

The specific crystal cut of the AOTF.nC produces good diffraction efficiency (> 90%), narrow resolution (1-2 nm), a low cross-talk between lines, and high extinction ratio.

The large separation angle between 0 and 1st orders, as well as the excellent output chromatic colinearity (<0.2 to <0.3 mrd ) make this AOTF a powerful tool for free space or fiber pigtailed applications. Its associated thermal stabilisation maintains stable diffraction efficiency and reduces dramatically beam drift with single mode fiber pigtailing. This is a major advantage for high sensitivity applications.



| AOTFnC*                         | UV                    | VIS VIS Low Res       |                        | Low -VIS              |
|---------------------------------|-----------------------|-----------------------|------------------------|-----------------------|
| Number of channels / Lines      | 4                     | 8                     | 4                      | 8                     |
| Acoustic velocity (nom)         | 675 m/s               | 650 m/s               | 650 m/s                | 660 m/s               |
| Optical wavelength range        | 350-430 nm            | 450-700 nm            | 450-700 nm             | 400-650 nm            |
| Transmission                    | > 80 % -nom 90%       | > 95 %                | > 95 %                 | > 90 %                |
| AO interaction type             | Birefringent          | Birefringent          | Birefringent           | Birefringent          |
| Selected order                  | +1                    | -1                    | -1                     | -1                    |
| Input Light polarization        | Linear parallel       | Linear orthogonal     | Linear orthogonal      | Linear orthogonal     |
| Output Light polarization       | Linear orthogonal     | Linear parallel       | Linear parallel        | Linear parallel       |
| Drive frequency range           | 110-180 MHz           | 80-153 MHz            | 80-153 MHz             | 74-158 MHz            |
| Active aperture                 | 2 x 2 mm <sup>2</sup> | 3 x 3 mm <sup>2</sup> | 3 x 3 mm <sup>2</sup>  | 3 x 3 mm <sup>2</sup> |
| Spectral resolution (FWHM)      | nom 1-2 nm            | nom 1-2 nm            | nom 4-9 nm             | nom 1-4 nm            |
| Separation angle (orders 0-1)   | > 4.2 degrees         | > 4.6 degrees         | > 4.6 degrees          | > 4 degrees           |
| Chromatic colinearity (order 1) | < 0.2 mrd @351+363 nm | < 0.2 mrd             | < 0.2 mrd              | < 0.3 mrd             |
| Temperature stabilization       | TN                    | TN                    | TN                     | TN                    |
| AO Efficiency                   | >=90%                 | >= 90 % /line         | >= 90 % /line          | >= 90 % /line         |
| Rise time                       | 980 ns / mm           | 1010 ns / mm          | 1010 ns / mm           | 1000 ns /mm           |
| Max accepted RF power           | < 1 W all lines       | < 1 W all lines       | < 1 W all lines nom    | 1 W all lines         |
| Electrical impedance            | 50 Ohms               | 50 ohms               | 50 ohms                | 50 ohms               |
| VSWR                            | < 2/1                 | < 2/1                 | < 2/1                  | < 2/1                 |
| Size                            | 70 x 36.6 x 35.8 mm   | 370 x 3.66 x 35.8 mm  | 3 70 x 36.6 x 35.8 mm3 | 70 x 36.6 x 35.8 mm3  |
| Operating temperature           | 10 to 40 °C           | 10 to 40 °C           | 10 to 40 °C            | 10 to 40 °C           |

<sup>\*</sup>Available as fiber pigtailed versions

| Power Supply               | OEM version : 24 VDC - nom 085 A           |
|----------------------------|--------------------------------------------|
|                            | Laboratory version: 110/230 VAC - 50Hz60 H |
| Extinction ratio @ 125 MHz | MOD IN > 80dB typ 90 dB                    |
|                            | BLK > 70 dB typ 80 dB                      |
|                            | MOD IN + BLK > 90 dB typ 100 dB            |
| Output RF power            | 22 dBm per channel [up to 36 dBm]          |
| Output Impedance           | 50 W                                       |
| V.S.W.R. Nom               | < 1.5/1                                    |
| Input/Output connectors    | DB25 / SMA (DB9 for RS232)                 |
| Size                       | OEM version : 207 x 127 x 20.2 mm 3        |
|                            | Laboratory version : Rack 19",1U           |
| Weight                     | OEM version : nom 1 kg                     |
|                            | Laboratory version : nom 4 kg              |
| Heat exchange              | OEM version :Conduction                    |
|                            | Laboratory version : stand alone           |
| Operating temperature      | 10 to 40 °C                                |
| Maximum case temperature   | OEM version : 50 °C                        |
|                            |                                            |

#### Number of channels

Hz 1, 4, 8

#### Frequency range

Will be adapted to AO up to 200 MHz

#### Frequency stability +/- 2 ppm / °C

#### Frequency accuracy

#### < 1 KHz

#### Frequency step

Nom 1 KHz

#### Frequency control

Remote Control or USB, Option: RS232 Rise Time / Fall Time (10-90 %)

#### < 50 ns

#### **Modulation Input Control**

KW

#### **Blanking input Control**

Analog 0-5 V or Analog 0-10 V / 10 KW (optionTTL)

#### MDS - MULTI DIGITAL SYNTHESIZER

The associated driver MDSnC, based on DDS (Direct

Synthesizer), has been specially designed in order to exploit the best of the AOTFnC features.

Its compact design with single power supply, low RF emissions and ease of use will satisfy the most demanding of applications, where accuracy and flexibility are key requirements.

Thanks to its complete digital design and integrated micro- controller setting up is fast, simple and repeat-

Access to and adjustments of functions is simple with either a bright LCD display (with remote control adjustment) or through a RS232 serial link (with computer control) or USB communication.

All parameters are stored in an EEPROM and are automatically loaded after each switch on.

Each line is externally controlled by a distinct modu-Analog 0-5 V / 10 KW or Analog 0-10 V / 10  $\frac{1}{100}$  lation input signal which can be TTL or analog. Additionally, all lines can be simultaneously controlled by a blanking signal which produces smooth effects without modifying the colorimetric balance.

The combination of the modulation input and blanking signals provides the best extinction ratio performance (> 100 dB).

# FIBER PIGTAILED AO MODULATORS



#### **FIBER PIGTAILED AOTF**

| Model               | Fibre                    | Wavelength<br>nm | Polarization | Resolution<br>nm -3dB | Losses<br>dB |
|---------------------|--------------------------|------------------|--------------|-----------------------|--------------|
| AOTFnC-VIS-FIO      | PM (IN + OUT)            | 450-700          | Linear       | 1-2                   | 4.5          |
| AOTFnC-VIS-FI       | PM (IN + OUT)            | 450-700          | Linear/      | 1-2                   | 2            |
| AOTFnC-400.650-FIO  | PM (IN + OUT)            | 400-650          | Linear       | 1-4                   | 4.5          |
| AOTFnC-400.650-FI   | PM (IN + OUT)            | 400-650          | Linear       | 1-4                   | 2            |
| AOTFnC-400.650-4FIO | PM<br>(4 INPUTS + 1 OUT) | 400-650          | Linear       | 1-4                   | 8            |

#### Modulators / Q-Switches / Frequency Shifters

These fiber pigtailed devices can be used depending on the models as modulators, fixed frequency shifters or Q-switches. Our standard versions are proposed with a single mode fiber with polarization maintaining, However on request,

we can offer different types of fibers or connectors. These devices are dedicated for telecommunication applications, as well as for printing, microscopy, Q-switching or any other application

| Model             | Wavelength<br>nm | Fiber in/out | Connectors             | Rise/FallTime | Frequency<br>shift<br>MHz | Amplitude<br>Modulation<br>Bandwidth<br>MHz | Insertion<br>Losses<br>db | Max<br>CW<br>Laser<br>power | Diver<br>model    |
|-------------------|------------------|--------------|------------------------|---------------|---------------------------|---------------------------------------------|---------------------------|-----------------------------|-------------------|
| MT200-B9-FIO      | 400-480          | SM, PM       | Super FC/PC,<br>FC/APC | 9             | 200                       | 53                                          | Nom 4 dB                  | 0,1 W                       | AA.MOD.<br>200-1W |
| MT200-BG9-FIO     | 480-630          | SM, PM       | Super FC/PC,<br>FC/APC | 9             | 200                       | 53                                          | Nom 3 dB                  | 0.5 W                       | AA.MOD.<br>200-1W |
| MT200-R9-FIO      | 630-700          | SM, PM       | Super FC/PC,<br>FC/APC | 9             | 200                       | 53                                          | Nom 3 dB                  | 0.5 W                       | AA.MOD.<br>200-2W |
| MT200-R13-FIO     | 630-700          | SM, PM       | Super FC/PC,<br>FC/APC | 13            | 200                       | 36                                          | Nom 2.5 dB                | 0.5 W                       | AA.MOD.<br>200-2W |
| MT110-IR20-FIO    | 1000-1100        | SM, PM       | Super FC/PC,<br>FC/APC | 20            | 110                       | 24                                          | Nom 2.5 dB                | 0.5 W<br>or 5 W             | AA.MOD.<br>110-2W |
| MT80-IR60-FIO     | 1000-1100        | SM, PM       | Super FC/PC,<br>FC/APC | 60            | 80                        | 24                                          | Nom 1.5 dB                | 0.5 W<br>or 5 W             | AA.MOD.<br>80-2W  |
| MT110-1550-20-FIO | 1550             | SM, PM       | Super FC/PC,<br>FC/APC | 20            | 110                       | 24                                          | Nom 3 dB                  | 0.5 W<br>or 5 W             | AA.MOD.<br>110-2W |
| MT80-1550-60-FIO  | 1550             | SM, PM       | Super FC/PC,<br>FC/APC | 60            | 80                        | 24                                          | Nom 2.5 dB                | 0.5 W<br>or 5 W             | AA.MOD.<br>80-2W  |

A fiber laser or fibre laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, vtterbium, neodymium, dysprosium, praseodymium, and thulium. Fiber nonlinearities, such as Stimulated Raman Scattering or Four Wave Mixing can also provide gain and thus serve in effect as gain media. Unlike most other types of lasers, the laser cavity in fiber laser is constructed monolithically by fusion splicing the different types of fibers; most notably fiber Bragg gratings replace here conventional dielectric mirrors to provide optical feedback.

To pump fiber lasers, semiconductor laser diodes or other fiber lasers are used almost exclusively. Fiber lasers can have several kilometer-long active regions and provide very high optical gain. They can support kilowatt level of continous output power because the fiber's high surface area to volume ratio allows efficient cooling. The fiber waveguiding properties reduce or remove completely thermal distortion of the optical path thus resulting in typically diffraction-limited high-quality optical beam. Fiber lasers also feature compact layout compared to rod or gas lasers of comparable power, as the fiber can be bent to small diameters and coiled. Other advantages include high vibrational stability, extended lifetime and maintenance-free turnkey operation.

#### **FIBER LASERS**

Many high-power fiber lasers are based on doubleclad fiber. The gain medium forms the core of the fiber, which is surrounded by two layers of cladding. The lasing mode propagates in the core, while a multimode pump beam propagates in the inner

cladding layer. The outer cladding keeps this pump light confined. This arrangement allows the core to be pumped with a much higher power beam than could otherwise be made to propagate in it, and allows the conversion of pump light with relatively low brightness into a much higher-brightness signal. As a result, fiber lasers and amplifiers are occasionally referred to as «brightness converters.»



Applications include: Material processing, telecommunications, spectroscopy, and medicine.

#### Generation of optical pulses

Pulsed lasers have some advantages versus continuous lasers: In some applications, such as optical communications, pulses convey information

Short pulses are used to achieve very large peak powers.

All the emitted energy is compressed into very short pulses, so as to reach very large peak powers

Some applications rely on optical pulses to take snap-shots of very rapidly occurring process, such as fast chemical reactions, or electronic processes in semiconductors.

Lasers can produce flashes of light that are many orders of magnitude shorter and brighter than ordinary flashlight

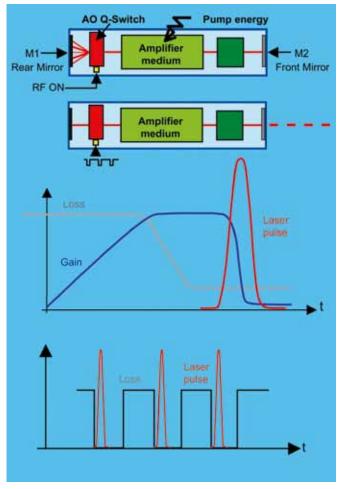
In some circumstances, it is the laser excitation mechanism itself that restricts the laser to pulsed mode operation, to reduce unwanted thermal load on the laser

A simple way to generate pulsed output is to put an optical switch (AO modulator for instance) at the output of a continuous wave laser (CW). By turning on and off, user can get pulses of light. For some applications, this is not efficient and this is preferable to use a switch (Q-Switch) inside the laser cavity. This has at least two advantages:

When the switch is closed, the laser cannot operate. This means the pump energy is not lost but stored in the active material in the form of excited atoms, or in the cavity in the form of light

When the switch is abruptly opened all the stored energy may be regained in a short pulse, generating peak powers that are many times higher than the average (CW) power.

#### Q-Switching


The Q or Quality factor of a laser cavity describes the ability of the cavity to store light energy in the form of standing waves. The Q factor is the ratio of energy contained in the cavity divided by the energy lost during each round trip in the cavity:

$$Q = 2\pi \frac{\text{Energy stored in the cavity}}{\text{Energy lost in a cycle}}$$

This means that a cavity with high losses dissipates a lot of energy per cycle hence it has a low Q value. A high Q cavity means the energy loss per cycle is small in the given cavity. By inserting a device in the cavity which is capable of controlling the loss of a cavity, we are effectively controlling the Q of the cavity. This device acts as an optical shutter or switch inside the cavity, which, when closed, absorbs or scatters the light, resulting in a lossy, low Q cavity. When the shutter is open, the cavity becomes low loss, high Q. This switch is called a Q-SWITCH.

#### **Acousto-optic Q-Switches**

A Q-switch is a special modulator which introduces high repetition rate losses inside a laser cavity (typ 1 to 100 KHz). They are designed for minimum insertion loss and to be able to with-



stand very high laser powers. In normal use an RF signal is applied to diffract a portion of the laser cavity flux out of the cavity. This increases the cavity losses and prevents from oscillation. When the RF signal is switched off, the cavity losses decrease rapidly and an intense laser pulse evolves.

It is essential in Q-switching to correlate the timing sequence of the optical pumping mechanism with the Q-switching. This means the following:

Assume that at the time when the laser pumping is turned on, the Q of the cavity is low. The high loss prevents laser action occurring so the energy from the pumping source is deposited in the upper laser level of the medium. At the instant, when the population inversion is at its highest level, the switch is suddenly open to reduce the cavity loss Because of the very large built up population difference, laser oscillations will quickly start and the stored energy is emitted in a single giant pulse

The lasing stops because the pulse quickly depopulates the upper lasing level to such an extent that the gain is reduced to below threshold.

This operation is periodically repeated in order to obtain the operating regime.

The associated RF driver in combination with the convenient Qswitch is a key component for an efficient Q-switching application. This one must be a class A driver with the fastest fall time in order to get an optimum falling slope of the cavity losses and to get the shortest and highest energy in each pulse.

A synchrone driver can be essential for some applications where synchronism pulse to pulse is critical. Phase locked drivers are also available in case of use of multi Q-switches in the same cavity.

The triggered signals or control signals of the driver may be chosen to have the opportunity to shape the Q-switch losses in time and perform the Q-switching effect safely and efficiently. The thermal security interlock is essential to protect the Q-switch from overheating and to improve its lifetime. Other securities such as VSWR control or disconnection protection can facilitate the task of the user and make the use of the system more safe. Depending on space and available resources, the choice of the driver will oriented towards an air, conduction through baseplate or water cooling driver, an OEM compact version or a 110/230 VAC version.

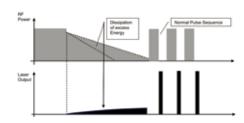
#### **Giant Pulses**

It is very common in high repetition rate Q-switched lasers, to observe a "giant first pulse" after a certain time of non operation. This giant pulse with excess of energy can create irreversible damages on the intra cavity optics.

Moreover, this undesirable increase of energy for the first pulses will lead to a non uniform peak power which may affect badly the application (different marking intensity for instance).

For this reason, user may have to dissipate or suppress the excess of energy of the first pulses. This can be achieved in controlling with a special sequence the Q-switch thanks to the provided RF driver.

#### **General methods to suppress Giant First Pulse FPS: First Pulse Suppression**


With this method, the pulse depth of the Q-Switch is controlled and limited so as to not open completely the cavity, and thus allow limited Energy to get out of the cavity.

The amount of Losses is decreased progressively so as to obtain the permanent Q-switch regime. It needs typically few pulses to get constant pulses.



#### **PPK: PRE PULSE KILLING**

With this method, the excess of energy inside the cavity is dissipated before starting the pulse sequence. As the excess of energy is eliminated prior starting pulse sequence, then the pulse sequence can start normally.



#### AA Drivers: Methods of control **Basic Pulse control (DPC Input)**

For all AA drivers, the Laser pulses are triggered by a TTL signal (Digital Pulse Control).

This input allows to control the Q-swicth with two states:

- No losses (TTL=0)= No RF power applied on Q-switch = Laser pulse can evolved
- Full Losses (TTL=1)= Full RF Power applied on Q-switch = Laser Cavity Blocked

#### **Analog Power control (FAC input)**

AA provides a supplementary analog input in order to control the RF power level. This input is pulled down (Typ 0-5Volts) it means, that if it is not connected, then signal is ramped to 0, then output power is disabled. The analog FAC signal controls linearly the RF amplitude of the output signal.

Note that the analog power control is combined with TTL pulse control (DPC) as follows:

Output RF power ~ TTL (DPC) X Analog (FAC) - If TTL (DPC) = 0 a Output RF Power = 0 whatever is FAC input (0 or 5 V)

- If TTL (DPC) = 1 a Output RF Power = 0 if FAC = 0V Maximum if FAC = 5V, Xx versus FAC input

#### Pulse Analog Control (PAC / RF OFF Analog Control)

The PAC input is an alternative analog input, which controls the RF OFF level of the driver.

This input (analog 0-5V typ) is pulled up. It means that when it is not connected, the signal ramped up to 5 Volts, and the driver can operate normally.

The analog PAC signal controls linearly the RF OFF amplitude of the output signal. It controls the threshold of leak-age. Note that the PAC Amplitude control is combined with TTL pulse control (DPC) as follows:

RF POWER OUTPUT ~ TTL (DPC) + Analog (PAC)

- If TTL (DPC) = 0 a Output RF Power = 0 if PAC=0V Maximum if PAC = 5V, Xx versus PAC input
- If TTL (DPC) = 1 a Output RF Power = Max whatever is PAC input (0 or 5 V)

# CHAPTER 3 PHOTONICS SWITCHES

| Carrier   |
|-----------|
| Frequency |
| MHz       |

Max RF **Power** W

Rise Fall/ Time ns

**Controls** 

**Exctinction Ratio** dB

45

Security Measurement

**Power Supply** 

**Class** 



QMODP0xx - Reliable Basic Solution up to 20 Watts

| 27.12 |    |
|-------|----|
| 40.68 | 10 |
| 68    | 20 |
| 80    |    |

TTL < 20 FAC (0-5V)

TTL(R)

FAC (0-5V)

NO

24 VDC 2.3-2.9 A

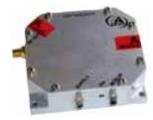


QMODP1xx - Compact Solution 20, 30, 70 Watts

| 27.12 |     |             |
|-------|-----|-------------|
| 21.12 | 20  | < 30        |
| 40.68 | 20  | <b>\</b> 30 |
| 40.00 | 30  | < 30        |
| 68    | 00  | 1 00        |
| 00    | 70  | < 50        |
| 80    | , 0 | 1 00        |

45

40


**Output Power** Return Power Thermal (QST + Driver)

NO

15 VDC

Α

Α



QMODP2xx - Ultra Compact Solution 20, 30, 70 Watts

| 27.12 | 5  | < 10        |     |  |
|-------|----|-------------|-----|--|
| 40.68 | 10 | < 20        | TTL |  |
| 68    | 20 | < 30        | 112 |  |
| 80    | 20 | <b>\</b> 30 |     |  |



24 VDC



QMODP3xx - High power solution 100-120 Watts

| 40.68 FAC (0-5V) Thermal 12 A (QST + Driver) | 27.12<br>40.68 | 120 | < 50 | TTL (R)<br>+<br>FAC (0-5V) | 45 |  | 24 VDC<br>12 A | Α |
|----------------------------------------------|----------------|-----|------|----------------------------|----|--|----------------|---|
|----------------------------------------------|----------------|-----|------|----------------------------|----|--|----------------|---|



QMODP4xx - DUAL OUTPUTS solution (2 synchronized outputs)

| 27.12<br>40.68<br>68<br>80 | 2 x 30<br>2 x 60 | < 50 | TTL (R)<br>+<br>FAC (0-5V) | 45 | Output Power<br>Return Power<br>Thermal<br>(QST + Driver) | 24 VDC<br>6-12 A | Α |
|----------------------------|------------------|------|----------------------------|----|-----------------------------------------------------------|------------------|---|
|----------------------------|------------------|------|----------------------------|----|-----------------------------------------------------------|------------------|---|

| Model            | Material     | Polarization | Carrier Freq.<br>MHz | Aperture<br>mm x mm | Loss% | Optional<br>Length mm |
|------------------|--------------|--------------|----------------------|---------------------|-------|-----------------------|
| QS80-A0.7-L1064  | Fused silica | Linear       | 80                   | 0.7 x 1             | > 60  | 20                    |
| QS40-A0.8-L1064  | Fused silica | Linear       | 40.68                | 0.8 x 1             | > 80  | 32                    |
| QS80-A0.7-L1064  | Fused silica | Linear       | 80                   | 0.7 x 1             | > 80  | 32                    |
| QS40-A1-L1064    | Fused silica | Linear       | 40.68                | 1 x 2               | > 80  | 32                    |
| QS80-A1-L1064    | Fused silica | Linear       | 80                   | 1x 2                | > 80  | 32                    |
| QCQ40-A1.5-L1064 | QUARTZ       | Linear       | 40.68                | 1.5 x 2             | > 80  | 32                    |
| QCQ80-A1.2-L1064 | QUARTZ       | Linear       | 80                   | 1.2 x 2             | > 80  | 32                    |

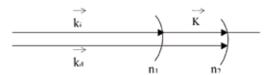
#### Water-cooled Q-Switches Solutions for high gain cavities. Water cooling for heat dissipation

| Material     | Polarization                                                                               | Carrier Freq.<br>MHz                                                                                                                                            | Aperture<br>mm x mm                                                                                                                                                                                                                       | Loss<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Optional<br>Length mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fused silica | Linear                                                                                     | 27.12                                                                                                                                                           | 2 x 2                                                                                                                                                                                                                                     | > 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | random                                                                                     | 27.12                                                                                                                                                           | 2 x 2                                                                                                                                                                                                                                     | > 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | Linear                                                                                     | 27.12                                                                                                                                                           | 3 x 3                                                                                                                                                                                                                                     | > 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | Random                                                                                     | 27.12                                                                                                                                                           | 3 x 3                                                                                                                                                                                                                                     | > 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | Linear                                                                                     | 40.68                                                                                                                                                           | 2 x 2                                                                                                                                                                                                                                     | > 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | Random                                                                                     | 40.68                                                                                                                                                           | 2 x 2                                                                                                                                                                                                                                     | > 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | Linear                                                                                     | 40.68                                                                                                                                                           | 3 x 3                                                                                                                                                                                                                                     | > 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fused silica | Random                                                                                     | 40.68                                                                                                                                                           | 3 x 3                                                                                                                                                                                                                                     | > 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | Fused silica | Fused silica Linear Fused silica random Fused silica Linear Fused silica Random Fused silica Linear Fused silica Random Fused silica Linear Fused silica Linear | Fused silica Linear 27.12 Fused silica random 27.12 Fused silica Linear 27.12 Fused silica Random 27.12 Fused silica Random 27.12 Fused silica Random 40.68 Fused silica Random 40.68 Fused silica Linear 40.68 Fused silica Linear 40.68 | Material         Polarization         MHz         mm x mm           Fused silica         Linear         27.12         2 x 2           Fused silica         random         27.12         2 x 2           Fused silica         Linear         27.12         3 x 3           Fused silica         Random         27.12         3 x 3           Fused silica         Linear         40.68         2 x 2           Fused silica         Random         40.68         2 x 2           Fused silica         Linear         40.68         3 x 3 | Material         Polarization         MHz         mm x mm         %           Fused silica         Linear         27.12         2 x 2         > 80           Fused silica         random         27.12         2 x 2         > 60           Fused silica         Linear         27.12         3 x 3         > 80           Fused silica         Random         27.12         3 x 3         > 70           Fused silica         Linear         40.68         2 x 2         > 80           Fused silica         Random         40.68         2 x 2         > 60           Fused silica         Linear         40.68         3 x 3         > 80 |

AA propose a complete line of Acousto-optic Q-switches and associated RF drivers, for a wide range of applications. They are manufactured from the highest quality materials, with optimized hard coatings for high damage threshold and long term operation. All AA Q-switches are designed so as to optimize heat dissipation and beam stability with a unique glueing and mechanical technology which reduces stress during operation.

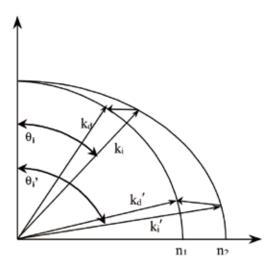





## CHAPTER 3 PHOTONICS AN INTRODUCTION TO AOTF-TUNABLE FILERS

source can be carried out by the acousto-optic interaction.

The angle of deflection of an acousto-optic deflector is pro-portional to the optical wavelength. It is thus possible to extract a particular wavelength. The spectral resolution is then limited by diffraction due to finished dimension (D) of the light beam. The limit of the spectral width can be deduced as:


$$\Delta \lambda_0 = \frac{\lambda_0 V}{D} \frac{1}{F}$$

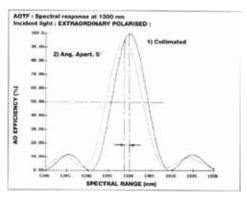
A good resolution (λ0/Δλ0 high) imposes a large dimension (D) a and b are parameters which depends of Θi and Θa of the light beam. The numerical aperture of such systems is thus obligatorily very low and thus their utilization is very limited. The collinear anisotropic interaction makes it possible to tune the filter by simple variation of the acoustic frequency, under significant numerical aperture:

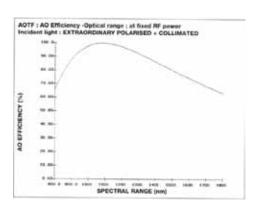


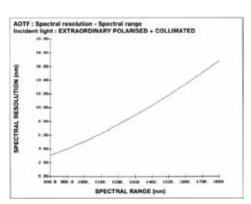
$$\eta pprox \eta_0 \sin c^2 (\frac{\Delta k L}{2\pi})$$
(collinear AOTF efficiency)

The non collinear anisotropic interaction, is also usable under a high angle of incidence (Oi >10°). This last configuration allows the use of materials with high figure of merit coefficients. (TeO2)




The extraction of a spectral component of an incoming light. One can show that a large angular aperture is possible as long as the tangents at the point of incidence and synchronism are parallel (the light rays are then parallel in the crystal)

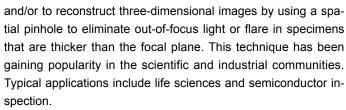

> A wide length of interaction (L) and an adequate configuration of the wave vectors (synchronism on a small range of K) guarantee obtaining a low bandwidth and thus a low spectral width  $(\Delta \lambda)$ .


$$\lambda = a \frac{\Delta n(\lambda)}{F} \qquad \Delta \lambda = b \frac{\lambda^2}{L}$$

Dn: birefringence(=|n2-n1|)

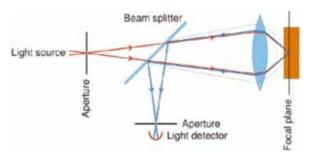
Examples:








#### **Application example**


#### **Confocal Microscopy**

Confocal microscopy is an imaging technique used to in-crease micrograph contrast

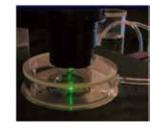


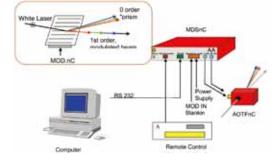
#### CONFOCAL LASER SCANNING MICROSCOPY

Confocal laser scanning microscopy (CLSM or LSCM) is a valuable tool for obtaining high resolution images and 3-D reconstructions. The key feature of confocal microscopy is its ability to produce blur-free images of thick specimens at various depths. Images are taken point-by-point and reconstructed with a computer, rather than projected through an eyepiece. The principle for this special kind of microscopy was developed by Marvin Minsky in 1953, but it took another thirty years and the development of lasers for confocal microscopy to become a standard technique toward the end of the 1980s.



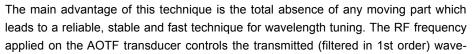
#### **IMAGE FORMATION**


In a laser scanning confocal microscope a laser beam passes a light source aperture and then is focused by an objective lens into a small (ideally diffraction-limited) focal volume within a fluorescent specimen. A mixture of emitted fluorescent light as well as reflected laser light from the illuminated spot is then recollected by the objective lens. A beam splitter separates the light mixture by allowing only the laser light to pass through and reflecting the fluorescent light into the detection apparatus. After passing a pinhole the fluorescent light is detected by a photodetection device (photomultiplier tube (PMT) or avalanche photodiode) transforming the light signal into an electrical one which is recorded by a computer.


The detector aperture obstructs the light that is not coming from the focal point, as shown by the dotted grey line in the image. The out-of-focus points are thus suppressed:

most of their returning light is blocked by the pinhole. This results in sharper images compared to conventional fluoresence microscopy techniques and permits one to obtain images of various z axis planes (z-stacks) of the sample.

The detected light originating from an illuminated volume element within the specimen represents one pixel in the resulting image. As the laser scans over the plane of interest a whole image is obtained pixel by pixel and line by line, while the brightness of a resulting image pixel corresponds to the relative intensity of detected fluorescent light. The beam is scanned across the sample in the horizontal plane using one or more (servo-controlled) oscillating mirrors. This scanning method usually has a low reaction latency and the scan speed can be varied. Slower scans provide a better signal to noise ratio resulting in better contrast and higher resolution. Information can be collected from different focal planes by raising or lowering the microscope stage. The computer can generate a three-dimensional picture of a specimen by assembling a stack of these two-dimensional images from successive focal planes.


In addition, confocal microscopy provides a significant improvement in lateral resolution and the capacity for direct, non-invasive serial optical sectioning of intact, thick living specimens with an absolute minimum of sample preparation. As laser scanning confocal microscopy depends on fluorescence, a sample usually needs to be treated with fluorescent dyes to make things visible. However, the actual dye concentration can be very low so that the disturbance of biological systems is kept to a minimum. Some instruments are capable of tracking single fluorescent molecules. Additionally transgenic techniques can create organisms which produce their own fluorescent chimeric molecules. (such as a fusion of GFP, Green fluorescent protein with the protein of interest).

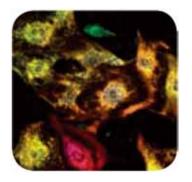




#### **ACOUSTO-OPTIC TUNABLE FILTERS**

An AOTF is a solid-state, electronically tunable bandpass filter, which uses the acoustooptic interaction inside an anisotropic medium. These filters can be used with multilines sources (mixed gas lasers, Laser diodes...) or with broadband light sources (Xenon, Halogen lamps...). They allow to select and transmit a single wavelength from the incoming light.






length. A complete spectrum analysis can be done by varying the frequency corresponding to the wavelength range. The RF amplitude level applied on the transducer allows to adjust the transmitted (filtered) light intensity level.

This is a unique feature that can provide the AOTF. It is fast (several µs), accurate and procures high extinction ratio.

We propose a whole range of AOTFs based on TeO2 with shear acoustic mode. The filters are designed so as to get the best performances in each wavelength range and to satisfy most of the applications: resolution down to 1 nm, Field of view up to 20 degrees, apertures up to 10 mm...In most cases, the filtered output from the tunable filter is made colinear to make easier the use of these devices, and to satisfy fiber pigtailing conditions. A random input polarization will be separated into two orthogonal polarizations (order -1 and +1).

| Source     | Wavelength<br>nm                                                                                            | Aperture mmxmm                                                                                                                                                                                                                                                                                                                                                                                                                        | Field of View degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tuning Time µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Polarization                                                                                                                   | Resolution nm-3dB                                                                                                                             | Efficiency                                                                                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laser      | 350-430                                                                                                     | 2 x 2                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear                                                                                                                         | 1-2                                                                                                                                           | 85                                                                                                                                                                  |
| Lamp       | 350-600                                                                                                     | 5 x 5                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear/Random                                                                                                                  | 5-35                                                                                                                                          | 80                                                                                                                                                                  |
| Laser/Lamp | 360-530                                                                                                     | 2 x 2                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linear/Random                                                                                                                  | 1,5-5                                                                                                                                         | 85                                                                                                                                                                  |
| Laser      | 400-650                                                                                                     | 3 x 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear                                                                                                                         | 1-4                                                                                                                                           | 85                                                                                                                                                                  |
| Laser      | 450-700                                                                                                     | 3 x 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear                                                                                                                         | 1-2                                                                                                                                           | 85                                                                                                                                                                  |
| Laser/Lamp | 400-700                                                                                                     | 6 x 6                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linear/Random                                                                                                                  | 5-25                                                                                                                                          | 85                                                                                                                                                                  |
| Lamp       | 400-700                                                                                                     | 4 x 4                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linear/Random                                                                                                                  | 3.5-17                                                                                                                                        | 85                                                                                                                                                                  |
| Lamp       | 400-700                                                                                                     | 3,5 x 3,5                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linear/Random                                                                                                                  | 2.5-12                                                                                                                                        | 85                                                                                                                                                                  |
| Lamp       | 480-620                                                                                                     | 5 x 5                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear/Random                                                                                                                  | 3-10                                                                                                                                          | 80                                                                                                                                                                  |
| Laser/Lamp | 500-850                                                                                                     | 5 x 5                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear/Random                                                                                                                  | 11-3                                                                                                                                          | 80-60                                                                                                                                                               |
| Laser/Lamp | 600-900                                                                                                     | 5 x 5                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear/Random                                                                                                                  | <4                                                                                                                                            | 70                                                                                                                                                                  |
| Lamp       | 1250-2500                                                                                                   | 3 x 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear/Random                                                                                                                  | 2-10                                                                                                                                          | 70-30                                                                                                                                                               |
| Laser      | 1520-1560                                                                                                   | 2 x 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linear/Random                                                                                                                  | 1.5                                                                                                                                           | 70                                                                                                                                                                  |
| Lamp       | 690-1064                                                                                                    | 3 x 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Linear/Random                                                                                                                  | nov-34                                                                                                                                        | 85                                                                                                                                                                  |
|            | Laser Lamp Laser/Lamp Laser Laser Laser Lamp Lamp Lamp Lamp Lamp Lamp Lamp Laser/Lamp Laser/Lamp Laser/Lamp | Source         nm           Laser         350-430           Lamp         350-600           Laser/Lamp         360-530           Laser         400-650           Laser         450-700           Laser/Lamp         400-700           Lamp         400-700           Lamp         480-620           Laser/Lamp         500-850           Laser/Lamp         600-900           Lamp         1250-2500           Laser         1520-1560 | Source         nm         mmxmm           Laser         350-430         2 x 2           Lamp         350-600         5 x 5           Laser/Lamp         360-530         2 x 2           Laser         400-650         3 x 3           Laser         450-700         3 x 3           Laser/Lamp         400-700         6 x 6           Lamp         400-700         4 x 4           Lamp         400-700         3,5 x 3,5           Lamp         480-620         5 x 5           Laser/Lamp         500-850         5 x 5           Lamp         1250-2500         3 x 3           Laser         1520-1560         2 x 3 | Source         nm         mmxmm         degrees           Laser         350-430         2 x 2         1           Lamp         350-600         5 x 5         7           Laser/Lamp         360-530         2 x 2         1           Laser         400-650         3 x 3         1           Laser         450-700         3 x 3         1           Laser/Lamp         400-700         6 x 6         4           Lamp         400-700         4 x 4         4           Lamp         480-620         5 x 5         8           Laser/Lamp         500-850         5 x 5         3           Laser/Lamp         600-900         5 x 5         4           Lamp         1250-2500         3 x 3         20           Laser         1520-1560         2 x 3         3 | Laser         350-430         2 x 2         1         <4.5           Lamp         350-600         5 x 5         7         <7.5 | Laser         350-430         2 x 2         1         <4.5         Linear           Lamp         350-600         5 x 5         7         <7.5 | Source         nm         mmxmm         degrees         µs         Polarization         nm-3dB           Laser         350-430         2 x 2         1         <4.5 |







## PULSE SELECTOR AND REGEN SWITCH



Synchronized switching systems ensure optimum performance Conoptics provides a family of products specifically tailored for pulse selection or regenerative amplifier switching systems. Each system consists of an optical modulator, a modulator driver, and synchronization electronics. The low voltage design approach taken here reduces modulator drive levels by an order of magnitude compared to other methods. This feature makes switching rates to tens of MHz readily achievable and virtually eliminates EMI effects.

#### **Pulse Selection Systems**

| SY     | STEM      |                        | DRIVER<br>PARAMETERS   |                       | MODULATOR P                               |                |                                                        |
|--------|-----------|------------------------|------------------------|-----------------------|-------------------------------------------|----------------|--------------------------------------------------------|
| DRIVER | MODULATOR | MINIMUM<br>PULSE WIDTH | MAXIMUM<br>REP<br>RATE | MINIMUM<br>WAVELENGTH | MAXIMUM WAVELENGTH FOR 100% DYNAMIC SWING | APERTURE<br>mm | DYNAMIC SWING<br>AT MAXIMUM<br>OPERATING<br>WAVELENGTH |
| 25D    | 350-160   | 18 / variable          | 20MHz                  | 350nm                 | 700nm                                     | 2.7            | 80%@1000nm                                             |
| 25D    | 360-80    | 18 / variable          | 20MHz                  | 600nm                 | 1000nm                                    | 2.7            | 37%@2500nm                                             |
| 25D    | 360-120   | 18 / variable          | 20MHz                  | 600nm                 | 1350nm                                    | 2.7            | 56%@2500nm                                             |
| 25D    | 360-160   | 18 / variable          | 20MHz                  | 600nm                 | 2000nm                                    | 2.7            | 93%@2500nm                                             |
| 307A   | 350-50    | 18 / variable          | 50KHz                  | 350nm                 | 850nm                                     | 3.1            | 95%@1000nm                                             |
| 307A-1 | 350-50    | 18 / variable          | 5KHz                   | 350nm                 | 850nm                                     | 3.1            | 95%@1000nm                                             |
| 307A   | 360-40    | 18 / variable          | 50KHz                  | 700nm                 | 2000nm                                    | 2.7            | 95%@2000nm                                             |
| 307A-1 | 360-40    | 18 / variable          | 5KHz                   | 700nm                 | 2000nm                                    | 2.7            | 95%@2000nm                                             |

Please contact the factory for special configurations. Typical static insertion loss is 6%

#### **Regen Switching Systems**

| gggyg         |                      |                     |                |                                         |                                      |                |
|---------------|----------------------|---------------------|----------------|-----------------------------------------|--------------------------------------|----------------|
| SYSTEM        | RISE<br>TIME<br>NSEC | MAXIMUM<br>REP RATE | APERTURE<br>mm | MAXIMUM<br>WAVELENGTH<br>SINGLE<br>PASS | MAXIMUM<br>WAVELENGTH<br>DOUBLE PASS | PULSE<br>WIDTH |
| 307 / 350-50  | 5                    | 50KHZ               | 3.1            | 880nm                                   | 1000nm                               | 40 to 500 nsec |
| 307/ 350-50LA | 5                    | 50KHz               | 5.7            | 450nm                                   | 900nm                                | 40 to 500 nsec |
| 25D / 350-105 | 8                    | 20MHz               | 3.1            | 400nm                                   | 800nm                                | 18 nsec to dc  |

## E-O MODULATOR



#### **Drive Electronics**

In general, the first application requirements considered in the choice of modulation system components are the information bandwidth and waveform requirement. The driver output voltage achievable is a function of amplifier bandwidth and, while this system parameter is not isolated from others, such as aperture diameter, operating wavelength, etc., it is normally the limiting parameter of the system.

#### **Optical Modulators**

All modulators listed in this data sheet are of the transverse field type, that is, the electric field produced by the applied signal voltage is perpendicular to the optical propagation di-

rection. The voltage swing required by a given modulator at a given operating wavelength to transit between the full off state to the full on state is called the Half Wave Voltage ( $V'_2$ ). The transverse field structure allows reduction of  $V'_2$  by manipulation of the crystal length to aperture ratio to a level achievable by available driver electronics. V1/2 is roughly proportional to wavelength and long wavelength devices usually require higher length to aperture ratios to accommodate existing driver output levels. Conoptics offers modulators constructed with three different crystal species: Ammonium Dihydrogen Phosphate (ADP), Potassium Dideuterium Phosphate (KD\*P), and Lithium Tantalate (LTA). Models 370, 380, and 390 utilize ADP as the active element. The unique feature of these models is the virtual non-existence of piezoelectric resonances. Models belonging to the 360 series utilize LTA. LTA has the lowest intrinsic V1/2 and the longest wavelength IR cutoff. Furthermore, it has a combination of high refractive index and relatively low dielectric constant which allows modulators to be designed which make full use of the intrinsic driver frequency response. Models in the 360 series exhibit piezoelectric resonances but they are discrete and very narrow. KD\*P is used in Model 350 series modulators. In terms of optical transmission bandwidth and driver frequency response utilization, this series falls in between ADP and LTA versions. Table 1 below provides the specifications our ADP (240-to-800nm), KD\*P (240-to-1100nm) and LTA (700-2000nm) series modulator product line.

|                                   | Model<br>Number | V ½ wave<br>@ 500nm | V ½ wave<br>@ 830nm | V ½ wave<br>@1064nm | V½ wave<br>@2500nm | Aperture<br>Diameter | Resonances | Contrast Ration @ 633nm and 1064nm | Length w/<br>Polarizer |
|-----------------------------------|-----------------|---------------------|---------------------|---------------------|--------------------|----------------------|------------|------------------------------------|------------------------|
|                                   | M370            | 184                 |                     |                     |                    | 2.5mm                | No         | 500:1,N/A                          | 158mm                  |
| ADP Crystal eries                 | M370 LA         | 263                 |                     | -                   |                    | 3.5mm                | No         | 500:1, N/A                         | 158mm                  |
| Wavelength Limits (240 to 800nm)* | M380            | 92                  |                     |                     |                    | 2.5mm                | No         | 500:1, N/A                         | 253mm                  |
| (2 10 to 0001111)                 | M390            | 115                 |                     |                     |                    | 3.5mm                | No         | 500:1, N/A                         | 272mm                  |
|                                   | M350-50         | 455                 | 757                 | 970                 |                    | 3.1mm                | Yes        | 500:1, 700:1                       | 106mm                  |
| KD*P Crystal                      | M350-80         | 261                 | 433                 | 522                 |                    | 2.7mm                | Yes        | 500:1, 700:1                       | 137mm                  |
| Series                            | M350-80LA       | 360                 | 600                 | 720                 |                    | 3.5mm                | Yes        |                                    | 137mm                  |
| Wavelength Limits                 | M350-105        | 226                 | 376                 | 472                 |                    | 3.1mm                | Yes        | 500:1, 700:1                       | 162mm                  |
| (240 to 1100nm)*                  | M350-160        | 130                 | 216                 | 275                 |                    | 2.7mm                | Yes        | 300:1, 500:1                       | 215mm                  |
|                                   | M350-210        | 113                 | 188                 | 240                 |                    | 3.1mm                | Yes        | 300:1, 500:1                       | 268mm                  |
|                                   | M360-40         |                     | 312                 | 400                 | 950                | 2.7mm                | Yes        | N/A, 200:1                         | 95mm                   |
| LTA Crystal Series                | M360-80         |                     | 143                 | 183                 | 430                | 2.7mm                | Yes        | N/A, 100:1                         | 137mm                  |
| Wavelength Limits (700 to 2000nm) | M360-120        |                     | 107                 | 138                 | 323                | 2.7mm                | Yes        | N/A ,100:1                         | 174mm                  |
| (100 to 20001111)                 | M360-160        |                     | 71                  | 92                  | 215                | 2.7mm                | Yes        | N/A, 100:1                         | 215mm                  |

#### **Special Notes**

- Special Order wavelengths below 400nm are available, please contact sales@conoptics.com
- Special Clamped version available to minimize Piezo-electric resonances
- To determine the ½ wave voltage at your operating wavelength, compute the voltage listed and multiply it by the ratio of the wavelengths. (i.e. M350-50 @  $700nm = 455 \times 700 / 500 = 637 \text{ Volts}$ )
- The last digits of the Model Number for the 350 and 360 Series designate the total crystal path length in millimeters.

#### **Modulator Modifications**

Any of the modulators listed here can be used as a phase modulator by simply rotating the input polarization direction by 45°. This procedure makes one of the modulator half segments essentially inactive and doubles V1/2 (now the voltage required for a 180° phase shift). A factory modification can be made during construction which restores V½ to its original value. This modification precludes use of the device as an intensity modulator, however, and is irreversible.

Shutters

#### **Amplifier Specifications**

Table 2 listed below provides the basic specifications of our line of amplifiers and the interface configuration to the modulators. All of our amplifiers include a DC Bias Supply with greater than +/- 250 volts for setting the modulators operating point. The lump capacitance amplifiers have (2) BNC cables driving the modulator push-pull. The 50 ohms S.E. configuration has (2) SMA connectors for driving a 50 ohm single ended modulator and a third connector (BNC) for DC Bias. The 100 ohm and 50 ohm balanced line configuration has (2) twinax connectors for driving a balanced line modulator and a third miniature twinax connector for the DC Bias.

Table 2 Amplifier Details

| Model | Bandwidth       | Rise/Fall Times | Max. Output V | Typical Drive Configuration | Output  |
|-------|-----------------|-----------------|---------------|-----------------------------|---------|
| 25A   | DC TO 25MHz     | 14ns            | 145           | 100 Ohms B.L.               | Analog  |
| 25D   | DC TO 30MHz     | 8ns             | 175           | 100 Ohm's B.L.              | Digital |
| 50    | DC TO 50MHz     | 7ns             | 90            | 50 Ohms B.L.                | Analog  |
| 100   | DC TO 100MHz    | 3.5ns           | 90            | 50 Ohms B.L.                | Analog  |
| 200   | 10KHz TO 200MHz | -               | 170           | 50 Ohms S.E.                | -       |
| 275   | DC TO 8MHz      | 50ns            | 275           | Lumped Capacitance          | Analog  |
| 302RM | DC TO 250KHz    | 1micro sec      | 750           | Lumped Capacitance          | Analog  |
| 302A  | DC TO 1MHz      | 350ns           | 350           | Lumped Capacitance          | Analog  |
| 307   | DC TO 50KHz     | 8ns             | 800           | Lumped Capacitance          | Digital |
| 505   | 20 TO 100MHz    |                 | 44            | 50 Ohms S.E.                | -       |
| 550   | 50 TO 500MHz    | -               | 140           | 50 Ohms S.E.                | -       |

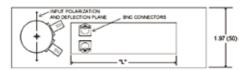
#### **Modulation Systems**

The modulators and drivers listed in this data sheet can be used in various combinations to form high performance, cost effective modulation systems. Table 3 shows the key performance characteristics of various combinations of standard driver electronics and modulators. The high frequency -3dB points may be limited either by the driver or the modulator. Rise and fall times are normally calculated as 0.35 divided by the -3dB bandwidth but, due to the compression caused by the sine squared transfer characteristic over its full on to off range, the optical rise and fall times of these systems is approximately 20% less.

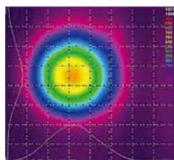
**Table 3 Modulation Systems** 

| Amplifier | Modulator | Bandwidth       | Transmission at Longest wavelength |
|-----------|-----------|-----------------|------------------------------------|
| 302RM     | 350-80LA  | DC to 250KHz    | 85% @ 1040nm                       |
| 302RM     | 350-50    | DC to 250KHz    | 85% @ 830nm                        |
| 302RM     | 350-80    | DC to 250KHz    | 85% @ 1200nm                       |
| 302A      | 350-105   | DC to 1MHz      | 85% @ 830nm                        |
| 307       | 350-50    | DC to 50KHz     | 85% @ 900nm                        |
| 505       | 360-80    | 20MHz to 100MHz | Phase Modulation                   |
| 550       | 360-80    | 50 to 250MHz    | 85% @ 830nm                        |
| 25A       | 350-160   | DC to 25MHz     | 85% @ 600nm                        |
| 25A       | 350-80    | DC to 25MHz     | 85% @ 830nm                        |
| 25D       | 350-160   | DC to 30MHz     | 85% @ 700nm                        |
| 25D       | 360-80    | DC to 30MHz     | 85% @ 1064nm                       |
| 50        | 380-2P    | DC to 50MHz     | 85% @ 500nm                        |
| 50        | 360-120   | DC to 50MHz     | 85% @ 830nm                        |
| 100       | 380-2P    | DC to 100MHz    | 85% @ 500nm                        |
| 100       | 360-120   | DC to 100MHz    | 85% @ 830nm                        |
| 200       | 350-80    | 10KHz to 200MHz | 85% @ 350nm                        |
| 200       | 350-160   | 10KHz to 100MHz | 85% @ 600nm                        |
| 200       | 360-80    | 10KHz to 200MHz | 85% @ 830nm                        |
| 275       | 350-105   | DC to 8MHz      | 85% @ 650nm                        |
| 275       | 350-160   | DC to 8MHz      | 85% @ 1064nm                       |

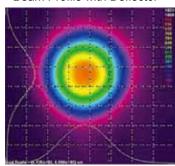
# ELECTRO-OPTIC BEAM DEFLECTORS







Conoptics series of electro-optic beam deflectors utilize a quadrapole electric field in an electro-optic material to produce a linear refractive index gradient proportional to the applied signal voltage. Choice of the proper material and crystallographic orientation eliminates piezoelectric ringing normally associated with other deflectors. There are no moving parts and they do not fatigue with prolonged use.

#### E-O Deflector


| SPECIFICATION                           | M310A      | M311A      | M312      | M312-2    |
|-----------------------------------------|------------|------------|-----------|-----------|
| Defection Efficiency micro-radians/volt | 1.5        | 3.0        | 0.6       | 1.2       |
| Usable Aperture, mm                     | 2.5        | 2.5        | 2.7       | 2.7       |
| Capacitance, pf *                       | 100        | 185        | 50        | 100       |
| Spectral Range **                       | 400 +750   | 400 → 750  | 400+1100  | 400 +1100 |
| Length, "L" (mm)                        | 4.65 (118) | 8.62 (219) | 2.77 (71) | 4.9 (125) |



#### Beam Profile Laser Alone



#### Beam Profile with Deflector



#### **Deflector Specifications**

**Dimensions** 50mm Diameter x 20 mm long

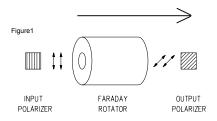
Transmission >90% 351//458 <2..5 mm Aperture

<2.63 microradians/volt (3 crystals) Sensitivity < 0.875 microradians per volt (1 crystal)

#### M2100 Driver

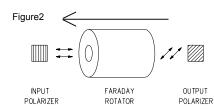
| Connected to 3 Crystal Port    | 0 to +/- 0.5 mrad                                                           |
|--------------------------------|-----------------------------------------------------------------------------|
| Access Time                    | <35 nsec                                                                    |
| Bandwidth                      | <10kHz to 12 MHz                                                            |
| Input                          | <0 dbm (626mv P-P) signal must have net DC = zero waveform (50% duty cycle) |
| Dimensions                     | 122 x 38.1 x 49.9 cm                                                        |
| Maximum Pulse Width (2% droop) | 200 nsec                                                                    |
| Static DC Bias Range           | 0 to 550v                                                                   |
| Electrical Input Power         | 1.6 KW                                                                      |

#### Model 302 Driver


| model 602 Billoi                 |                                 |
|----------------------------------|---------------------------------|
| Connected to Single Crystal Port | 0 to +/- 0.3 mrad;DC to 200 KHz |
| Access Time                      | <1 microsecond                  |
| Input Requirement                | <2 Volts P-P                    |
| Input Impedance                  | <50 Ohms                        |
| Output Voltage                   | 750 Volts P-P                   |
| -3 db Bandwidth                  | 200 KHz                         |
| Driver Cabinet                   | 6.5" W x 4.125" L x 415" H      |
| Power Suply Cabinet              | 19" Rack x 5.25" H              |

# FARADY ROTATOR / ISOLATOR BASICS

#### **Faraday Rotator**


The negative effects of optical feedback on laser oscillators and laser diodes have long been know. Problems include frequency instability, relaxation oscillations, amplified stimulated emission and in extreme cases optical damage. As laser have improved, the need to protect laser oscillators and laser diodes from optical feedback has increased. A faraday isolators' ability to allow light to pass unimpeded in one direction while strongly attenuating light traveling in the opposite direction eliminates the negative effects of optical feedback.

At the heart of a Faraday isolator is a Faraday rotator. Faraday rotators utilize high strength, rare earth permanent magnets in conjunction with a high damage threshold optical element to provide a uniform 45° polarization to light passing through the device.



A Faraday isolator consists of three main components an input polarizer, a Faraday rotator and an output polarizer. As shown in Figure 1, light traveling in the forward direction passes through the input polarizer and becomes polarized in the vertical plane. Upon passing through the Faraday rotator, the plane of polarization will have been rotated 45° on axis. The output polarizer, which has been aligned 45° relative the input polarizer will then let the light pass through unimpeded. As Figure 2 shows, light traveling in the reverse direction will pass through the

output polarizer and become polarized at 45°. The light will then pass through the Faraday rotator and experience an additional 45° of nonreciprocal rotation. The light is now polarized in the horizontal plane and will be rejected by the input polarizer, which only allows light polarized in the vertical plane to pass unimpeded.



A Faraday isolators' ability to provide nonreciprocal rotation while maintaining a linear polarization is what differentiates it from a  $\lambda/4$  plate-polarizer type isolator and allows it to provide higher isolation.

#### **Broadband Isolator**

Some applications, such as isolating individual amplifiers in a Ti:sapphire amplifier chain while maintaining the ability to tune rapidly over the amplifier bandwidth or isolating a femtosecond oscillator from a Ti:Sapphire regenerative amplifier, require isolators that are wavelength independent. Unfortunately, standard isolators are only capable of providing high isolation and transmission over a narrow range of wavelengths, usually about 30-40nm. For this reason we provide Broadband isolators. Broadband isolators are unique in that they are passive devices

which provide high isolators and good transmission over a 250nm range simultanceously.

A broadband isolator achieves its wide bandwidth by compensating for the dispersion in the Faraday rotator optic. While the direction of polarization rotation in a Faraday rotator is dependent upon the direction of the rotators' magnetic field, the direction of rotation in a crystal quartz rotator is dependent upon the direction of light propagating through it. By using a 45° crystal quartz optical rotator with its dispersion similar to the optic in the Faraday rotator, and aligning the Faraday rotator and crystal quartz rotator such that they rotate the polarization of back reflected light in opposite directions, the Faraday isolator becomes less wavelength dependent, if 45° rotator and crystal quartz rotator having the same dispersion and 90° (at the center wavelength only) in the forward direction.

#### **Isolators for Laser Diode**

Laser diodes present special challenges for Faraday isolators. Their beams tend to be highly elliptical. Some laser diodes (particularly single mode laser diodes) require very high isolators with 3x8mm apertures. These isolators utilize a proprietary magnetic design which allows them to be very small in size and low in cost.

The other challenge in designing an isolator for laser diodes, the need to attain high isolation, has also resulted in certain tradeoffs. Because ONSET's laser diode isolators are very small in size and inexpensive, applications requiring >60dB isolation can be solved by using two ONSET isolators in series. Another feature of ONSET's laser diode isolators is their ability to be tuned over a small wavelength range. This allows the performance of the isolator to be optimized for small changes in wavelength brought on by temperature drift of the laser diode.

#### **Key Optical Components of a Faraday Isolator:**

A. Faraday rotator optic: The most important optical element in a Faraday isolator is the Faraday rotator optic. The characteristics that one looks for in a Faraday rotator optic include a high verdet constant, low absorption coefficient, low non-linear refractive index and high damage threshold. Also, to prevent self-focusing and other thermal related effects, the optic should be as short as possible. The two most commonly used materials for the 650-1100nm range are terbium gallium garnet(TGG)and terbium doped borosilicate glass.

ONSET uses both materials.

B. Polarizers: Also of critical importance in determining the performance of Faraday isolator are the polarizers. Desirable polarizer characteristics include high damage threshold, high extinction ratios and low transmission losses. ONSET's 1030-11080nm isolators use thin film polarizers. Broadband isolators utilize calcite polarizers with Brewster angle entrance and exit faces. Laser diode isolator utilize PolarcorTM polarizers.

#### **Optical Component Specifications:**

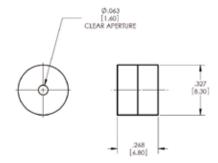
| Faraday Rotator Optic Specifications: |                    |                    |  |  |  |  |
|---------------------------------------|--------------------|--------------------|--|--|--|--|
|                                       | Tb:Glass           | TGG                |  |  |  |  |
| Bulk damage threshold @10nsec         | 2J/cm <sup>2</sup> | 5J/cm <sup>2</sup> |  |  |  |  |
| Absorption coefficient @1064nm        | <0.005cm-1         | <0.0035cm-1        |  |  |  |  |
| Nonlinear Refractive Index            | 2.7x10-13esu       | 8x10-13esu         |  |  |  |  |
| Index of Refraction @1064nm           | 1.720              | 1.95               |  |  |  |  |
| Verdet Constant @1064nm (min/Oe-cm)   | 0.098              | 0.125              |  |  |  |  |

| Polarizer Specifications: |                              |                    |                                 |  |  |  |  |
|---------------------------|------------------------------|--------------------|---------------------------------|--|--|--|--|
|                           | 1030-<br>1080nm<br>Isolators | Broadband<br>Laser | Isolators<br>Diode<br>Isolators |  |  |  |  |
| Material                  | BK-7                         | Calcite            | Polarcor™                       |  |  |  |  |
| Damage Threshold @10nsec  | 5J/cm <sup>2</sup>           | 3J/cm <sup>2</sup> | 25W/cm²(cw)                     |  |  |  |  |
| Refractive Index          | 1.517 @1064nm                | 1.48216 @800nm     | 1.529 @583nm                    |  |  |  |  |
| Transmittance             | ≥96%                         | ≥98%               | ≥9%@800nm                       |  |  |  |  |
| Extinction Ratio          | ≥1000:1                      | ≥10,000:1          | ≥10,000:1                       |  |  |  |  |

# 1050-1080nm LOW POWER FREE SPACE FARADAY ISOIATORS



- Compact size
- 2I1064L2 gives >60dB isolation
- Great price/performance ratio


#### **APPLICATIONS:**

· Decouple seed lasers from slave lasers Eliminate frequency instability in laser diodes due to optical feedback

| Part no. (Model) <sup>a</sup> | Clear<br>Aper.<br>(mm) | Transmission<br>@25°C | Isolation<br>@25°C | Pulsed Damage<br>Threshold @<br>10ns |
|-------------------------------|------------------------|-----------------------|--------------------|--------------------------------------|
| 110-10090-0001 (2BIG1064)     | 1.5                    | ≥75%                  | ≥30dB              | 500mW CW                             |
| 110-10091-0001 (2BIG1064PBS)  | 1.5                    | ≥75%                  | ≥30dB              | 1MW/cm <sup>2</sup>                  |
| 110-10097-0001 (2I1064L2)     | 1.5                    | ≥65%                  | ≥60dB              | 500mW CW                             |

#### Notes:

a. Product specifications and pricing subject to change without notice





# BROADBAND (Ti:Sapphire) FARADAY ROTATORS & ISOLATORS



- · Prevent parasitic oscillations in high gain amplifier chains
- Prevents preferential lasing at outer low gain wavelengths

#### **APPLICATIONS:**

- · Completely passive device, no tuning required
- Provides high isolation and good transmission simultaneously

#### **ISOLATORS**

| Part No.<br>(Model) <sup>a</sup> | Clear<br>Aper. | Center λ (nm) | Spectral<br>Range (nm) | Optical Path (mm) | Polarizer<br>Type | Damage<br>Threshold   |
|----------------------------------|----------------|---------------|------------------------|-------------------|-------------------|-----------------------|
| 110-10188-0001 (BB8-5I-RND)      | 5.0mm          | 800           | 720-950                | 42                | Glan Laser        | 300MW/cm <sup>2</sup> |
| 110-10059-0001 (BB8-8I)          | 8.0mm          | 800           | 720-950                | 15                | PBS Cube          | 100MW/cm <sup>2</sup> |
| 110-10155-0001 (BB8-10I)         | 10.0mm         | 800           | 720-950                | 28                | PBS Cube          | 100MW/cm <sup>2</sup> |
| 110-10130-0001 (BB9-5I)          | 5.0mm          | 900           | 800-1050               | 43                | Glan Laser        | 300MW/cm <sup>2</sup> |

#### **ROTATORS**

| Part No.<br>(Model) <sup>a</sup> | Clear<br>Aper. | Center λ<br>(nm) | Spectral<br>Range (nm) | Optical Path (mm) | Pulsed<br>Damage<br>Threshold @10ns | Damage<br>Threshold |
|----------------------------------|----------------|------------------|------------------------|-------------------|-------------------------------------|---------------------|
| 110-10029-0001 (BB8-5R)          | 5.0mm          | 800              | 720-950                | 42                | NA                                  | 5J/cm <sup>2</sup>  |
| 110-10058-0001 (BB8-8R)          | 8.0mm          | 800              | 720-950                | 15                | NA                                  | 5J/cm <sup>2</sup>  |
| 110-10055-0001 (BB8-10R)         | 10.0mm         | 800              | 720-950                | 28                | NA                                  | 5J/cm <sup>2</sup>  |
| 110-10129-0001 (BB9-5R)          | 5mm            | 900              | 800-1050               | 43                | NA                                  | 5J/cm <sup>2</sup>  |

#### Notes:

a. Product specifications and pricing subject to change without notice

# 500-1030nm WAVELENGTH TUNABLE FARADAY ISOLATORS



- Wavelength tunability allows optimal isolation over a range of wavelengths
- Easy to align isolator for various polarizationss
- Optical λ/2 plate available
- All isolators have double escape ports on input and output of the isolators

#### **APPLICATIONS:**

- Eliminate frequency instability in laser diodes due to optical feedback
- Eliminate parasitic oscillations in amplified laser
- Eliminate relaxation oscillations in mode-locked lasers

#### **ISOLATORS**

| Part No. (Model) <sup>a</sup> | Center λ (nm) | Spectral<br>Range (nm) | Isolation<br>@25°C | Transmission @25°C | Polarizer<br>Type | Damage<br>Threshold       |
|-------------------------------|---------------|------------------------|--------------------|--------------------|-------------------|---------------------------|
| 110-10081-0001 (4I980-LP)     | 980           | 960-1030               | 30-38dB            | >90%               | Dichroic Glass    | 25W/cm <sup>2</sup> CW    |
| 110-10077-0001 (4I850-LP)     | 850           | 840-960                | 30-38dB            | >88%               | Dichroic Glass    | 25W/cm <sup>2</sup> CW    |
| 110-10073-0001 (4I780-LP)     | 780           | 720-840                | 30-38dB            | >82%               | Dichroic Glass    | 25W/cm <sup>2</sup> CW    |
| 110-10069-0001 (4I650-LP)     | 650           | 630-700                | 30-35dB            | >75%               | Dichroic Glass    | 25W/cm <sup>2</sup> CW    |
| 110-10082-0001 (4I980-MP)     | 980           | 900-1030               | 27-35dB            | >88%               | PBS Cube          | 1J/cm <sup>2</sup> @ 10ns |
| 110-10078-0001 (4I850-MP)     | 850           | 800-900                | 27-35dB            | >88%               | PBS Cube          | 1J/cm <sup>2</sup> @ 10ns |
| 110-10074-0001 (4I780-MP)     | 780           | 720-830                | 27-35dB            | >88%               | PBS Cube          | 1J/cm <sup>2</sup> @ 10ns |
| 110-10070-0001 (4I650-MP)     | 650           | 600-680                | 27-32dB            | >88%               | PBS Cube          | 1J/cm <sup>2</sup> @ 10ns |
| 110-10068-0001 (4I532-MP)     | 532           | 500-600                | 27-32dB            | >885               | PBS Cube          | 1J/cm <sup>2</sup> @ 10ns |

#### **ROTATORS**

| Part No. (Model) <sup>a</sup> | Center λ ±10nm | Extinction<br>@25°C<br>(dB) <sup>b</sup> | Transmission<br>@25Transmission<br>@25°C | Polarizer<br>Type | Pulsed Damage<br>Threshold<br>@10ns |
|-------------------------------|----------------|------------------------------------------|------------------------------------------|-------------------|-------------------------------------|
| 110-10084-0001 (4R980)        | 980            | ≥30                                      | >90%                                     | NA                | 3J/cm <sup>2</sup>                  |
| 110-10080-0001 (4R850)        | 850            | ≥30                                      | >88%                                     | NA                | 3J/cm <sup>2</sup>                  |
| 110-10076-0001 (4R780)        | 780            | ≥30                                      | >82%                                     | NA                | 3J/cm <sup>2</sup>                  |
| 110-10072-0001 (4R650)        | 650            | ≥30                                      | >75%                                     | NA                | 3J/cm <sup>2</sup>                  |
| 110-10095-0001 (4R532)        | 532            | ≥30                                      | >88%                                     | NA                | 3J/cm <sup>2</sup>                  |

- a. Product specifications and pricing subject to change without notice
- b. When placed between crossed polarizers with extinction ratios of ≥1000:1.

# 1030-1080nm HIGHT POWER FREE SPACE FARADAY ROTATORS & ISOLATORS



- Device performance can be optimized for any wave length between 1030 and 1080nm
- All isolators have double escape ports on both the input and output of the device
- All isolators can be easily aligned for varying polarization
- Optional λ/2 plate available for all devices

#### **APPLICATIONS:**

- Decouple laser oscillators from ASE created by amplifiers
- Eliminate relaxation oscillations in mode-locked lasers due to optical
- Eliminate frequency instability in seed sources due to optical feedback

#### **ISOLATORS**

| Clear<br>Aper.<br>(mm) | Part No. (Model) <sup>a</sup> | Trans.<br>@25°C<br>(%) | Isolation at 25°C (dB) | Rotation at Specified λ (°) | Optical Path (mm)/Rotating Medium | Pulsed Damage<br>Threshold<br>@ 10ns |
|------------------------|-------------------------------|------------------------|------------------------|-----------------------------|-----------------------------------|--------------------------------------|
| 2.0                    | 110-10008-0001 (211055)       | >92                    | >30                    | 45±3                        | 39 / TGG                          | 5J/cm <sup>2</sup>                   |
| 4.0                    | 110-10010-0001 (4I1055)       | >92                    | >30                    | 45±3                        | 39 / TGG                          | 5J/cm <sup>2</sup>                   |
| 8.0                    | 110-10016-0001 (8I1055)       | >92                    | >30                    | 45±3                        | 39 / TGG                          | 5J/cm <sup>2</sup>                   |
| 12.0                   | 110-10021-0001 (12I1055)      | >92                    | >30                    | 45±3                        | 39 / TGG                          | 5J/cm <sup>2</sup>                   |
| 15.0                   | 110-10043-0001 (15I1055)      | >92                    | >30                    | 45±3                        | 39 / TGG                          | 5J/cm <sup>2</sup>                   |
| 20.0                   | 110-10025-0001 (20I1055)      | >92                    | >30                    | 45±3                        | 39 / TGG                          | 5J/cm <sup>2</sup>                   |
| 25.0                   | 110-10046-0001 (2511055)      | ≥90                    | >30                    | 45±3                        | 57/Tb:glass                       | 2J/cm <sup>2</sup>                   |
| 35.0                   | 110-10140-0001 (35I1055)      | ≥90                    | >30                    | 45±3                        | 57/Tb:glass                       | 2J/cm <sup>2</sup>                   |
| 45.0                   | 110-10052-0001 (45I1055)      | ≥90                    | >30                    | 45±3                        | 57/Tb:glass                       | 2J/cm <sup>2</sup>                   |

#### **ROTATORS**

| Clear<br>Aper.<br>(mm) | Part No. (Model) <sup>a</sup> | Trans.<br>@25°C<br>(%) | Isolation at 25°C (dB) <sup>b</sup> | Rotation at<br>Specified λ (°) | Optical Path<br>(mm)/Rotating<br>Medium | Pulsed Damage<br>Threshold<br>@ 10ns |
|------------------------|-------------------------------|------------------------|-------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------|
| 2.0                    | 110-10007-0001 (2R1055)       | >98                    | >30                                 | 45±3                           | 39 / TGG                                | 5J/cm <sup>2</sup>                   |
| 4.0                    | 110-10009-0001 (4R1055)       | >98                    | >30                                 | 45±3                           | 39 / TGG                                | 5J/cm <sup>2</sup>                   |
| 8.0                    | 110-10019-0001 (8R1055)       | >98                    | >30                                 | 45±3                           | 39 / TGG                                | 5J/cm <sup>2</sup>                   |
| 12.0                   | 110-10020-0001 (12R1055)      | >98                    | >30                                 | 45±3                           | 39 / TGG                                | 5J/cm <sup>2</sup>                   |
| 15.0                   | 110-10042-0001 (15R1055)      | >98                    | >30                                 | 45±3                           | 39 / TGG                                | 5J/cm <sup>2</sup>                   |
| 20.0                   | 110-10024-0001 (20R1055)      | >98                    | >30                                 | 45±3                           | 39 / TGG                                | 5J/cm <sup>2</sup>                   |
| 25.0                   | 110-10049-0001 (25R1055)      | ≥96                    | >30                                 | 45±3                           | 57/Tb:glass                             | 2J/cm <sup>2</sup>                   |
| 35.0                   | 110-10050-0001 (35R1055)      | ≥96                    | >30                                 | 45±3                           | 57/Tb:glass                             | 2J/cm <sup>2</sup>                   |
| 45.0                   | 10-10051-0001(45R1055)        | ≥96                    | >30                                 | 45±3                           | 57/Tb:glass                             | 2J/cm <sup>2</sup>                   |

- a. Product specifications and pricing subject to change without notice
- b. When placed between crossed polarizers with extinction ratios of ≥1000:1.

## Yb:FIBER FREE SPACE PI ISOLATORS



- Protect pulsed Yb:Fiber lasers from back reflections during marking applications.
- Protect CW Yb:Fiber lasers from back reflections during etching, cutting, or welding applications.
- Models for power levels up to 300W, note example of spectral response (100W model shown).
- Models for 1/e 2 beam diameters from 350µm to 5mm.
- · Mounting option for fiber collimator attachment.

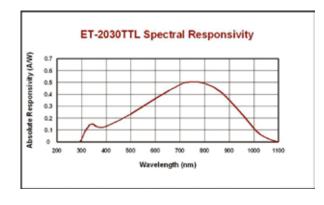
| Part No. (Model)a                                                             | 110-10175-0001<br>(PI-0.7-Yb) | 110-10235-0001<br>(PI-2.0-Yb) | 110-10178-0001<br>(PI-6.2-Yb) | 110-10125-0001<br>(PI-9.0-Yb-100) | 110-10125-0003<br>(PI-9.0-Yb-300) |
|-------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------|
| Clear Aperture                                                                | 0.7mm                         | 2.0mm                         | 6.2mm                         | 9.0mm                             | 9.0mm                             |
| Max 1/e <sup>2</sup> beam dia.                                                | 0.35mm                        | 1.0mm                         | 3.1mm                         | 5.0mm                             | 5.0mm                             |
| Isolator Type                                                                 | Displacer                     | Displacer                     | Wedge <sup>b</sup>            | Wedge <sup>b</sup>                | Wedge <sup>b</sup>                |
| Tempoperating                                                                 | 5-50°C                        | 5-50°C                        | 5-50°C                        | 5-50°C                            | 5-50°C                            |
| Tempstorage                                                                   | -20 to 60°C                   | -20 to 60°C                   | -20 to 60°C                   | -20 to 60°C                       | -20 to 60°C                       |
| Isolation@23°C,<br>1070nm                                                     | >30dB                         | >30dB                         | >30dB                         | >27dB <sup>a</sup>                | >25dB <sup>a</sup>                |
| Min. Isolation across<br>T-oper., 1070nm                                      | >20dB                         | >20dB                         | >20dB <sup>a</sup>            | >18dB <sup>a</sup>                | >18dB <sup>a</sup>                |
| Transmission                                                                  | >94%                          | >94%                          | >94%                          | >94%                              | >94%                              |
| Return Loss                                                                   | <-50dB                        | <-50dB                        | <-50dB                        | <-50dB                            | <-50dB                            |
| Operating Humidity                                                            | 95%                           | 95%                           | 95%                           | 95%                               | 95%                               |
| Max. Power Handling                                                           | 25W                           | 40W                           | 75W                           | 100W                              | 300W                              |
| Range of Focal Length of Thermal Lens at P-max and 1/e <sup>2</sup> beam dia. | 0.2-0.4m                      | 1.1-1.9m                      | 5.7-9.6m                      | 11.2-18.7m                        | 5.5-6.2m                          |
| Range of Absorbed<br>Power                                                    | .075-0.13W                    | .12-0.2W                      | .225-0.38W                    | 0.3-0.5W                          | 0.9-1.0W                          |
| Min. distance from<br>Laser Head                                              | N/A                           | N/A                           | 355mm <sup>b</sup>            | 516mm <sup>b</sup>                | 516mm <sup>b</sup>                |

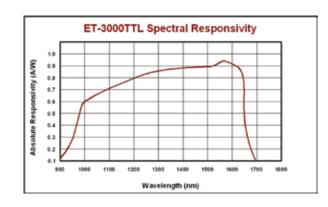
a. Product specifications and pricing subject to change without notice.

b. The isolated power in the wedge based isolator is directed out of the input aperture at an angle to the input beam; please refer to the Users Guides for more details. For applications at high average power and operating temperatures refer to the Users Guides and bulletins for more detailed infor-

# PHOTODETECTORS WITH ANALOG & TTL OUTPUTS




- · Can generate analog or TTL output
- · Contains pulse stretch feature
- Contains an adjustable trigger threshold


#### **APPLICATIONS:**

- Triggering applications with TTL output
- Monitoring the output of Q-switched lasers
- Monitoring the output of externally modulated CW

| Model                         | ET-2030TTL    | ET-3000TTL         |  |
|-------------------------------|---------------|--------------------|--|
| Detector Type                 | PIN           | PIN                |  |
| Detector Material             | Silicon       | InGaAs             |  |
| Active Area (dia.)            | 0.4mm         | 100µm              |  |
| Acceptance Angle              | 10°.          | 20°                |  |
| Power Supply                  | 12VDC         | 12VDC              |  |
| Mounting (Tapped Holes)       | 8-32 and M4   | 8-32 and M4        |  |
| Analog Output                 |               |                    |  |
| Risetime/Falltime             | <300ps        | <175ps             |  |
| Sensitivity                   | 0.4A/W@830nm  |                    |  |
| 0.8A/W@1.3μm                  |               |                    |  |
| Frequency Response            | DC-1.2GHz     | DC-2GHz            |  |
| Maximum Continuous Current    | 10mA          | 10mA               |  |
| Max linear CW density         | <10mA/mm2     | <5mA/mm2 (damage)  |  |
| Max linear pulse density      | <10mA/mm2     | <20mW/mm2 (damage) |  |
| Connector                     | BNC           | BNC                |  |
| TTL Output                    |               |                    |  |
| Risetime                      | <8ns          | <8ns               |  |
| Falltime                      | <9ns          | <9ns               |  |
| Adjustable Trigger Threshold  | 40-500mV      | 40-500mV           |  |
| Threshold Monitor             | External      | External           |  |
| Minimum Detectable Pulsewidth | 8ns           | 8ns                |  |
| Frequency Response            | DC-60MHz      | DC-60MHz           |  |
| Logic High                    | >3.0V         | >3.0V              |  |
| Logic Low                     | <0.5V         | <0.5V              |  |
| Pulse Stretch (when enabled)  | 100ns typical | 100ns typical      |  |
| Termination                   | 500Ω          | 500Ω               |  |
| Connector                     | BNC           | BNC                |  |

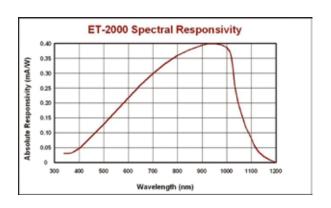
a. Product specifications and pricing subject to change without notice.

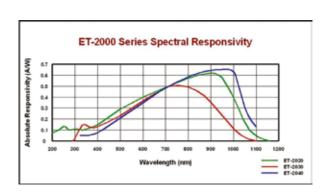




# BIASED SILICON PHOTODETCTOR




- All photodetectors come with their own internal or ex ternal power
- Combination 110/220VAC external power supply for externally biased models
- Available with optional FC or SMA input receptacle


#### **APPLICATIONS:**

- Monitoring the output of Q-switched lasers
- Monitoring the output of mode-locked lasers
- Monitoring the output of externally modulated CW
- Time domain and frequency response measurements

| Model                        | (ET-2000)                                         | (ET-2020)                                                                    | (ET-2030)     | (ET-2040)                             |
|------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|---------------|---------------------------------------|
| Detector Type                | PIN                                               | PIN                                                                          | PIN           | PIN                                   |
| Risetime                     | <200ps                                            | <1.5ns                                                                       | <300ps        | <30ps                                 |
| Falltime                     | <350ps                                            | <1.5ns                                                                       | <300ps        | <30ps                                 |
| Responsivity @830nm          | 0.4mA/W                                           | 0.5A/W                                                                       | 0.4A/W        | 0.5A/W                                |
| Bias Voltage                 | 3V                                                | 24V                                                                          | 9V            | 24V                                   |
| Cut Off Frequency into 50Ω   | >1.5GHz                                           | >200MHz                                                                      | >1.2GHz       | >25MHz                                |
| Active Area                  | 0.006mm2                                          | 2.55mm dia.                                                                  | 0.4mm dia.    | 4.57mm dia.                           |
| Dark Current                 | <1nA                                              | <10nA                                                                        | <0.1nA        | >20nA                                 |
| Junction Capacitance         | <4pF                                              | <10pF                                                                        | <1.5pF        | <45pF                                 |
| Reverse Breakdown Voltage    | 40V                                               | 150V                                                                         | 20V           | 50V                                   |
| Acceptance Angle (1/2 angle) | 20°                                               | 50°                                                                          | 30°           | 60°                                   |
| Noise Equivalent Power       | <0.1pW/√Hz                                        | <1.0pW/√Hz                                                                   | <0.0015pW/√Hz | <0.16pW/√Hz                           |
| Maximum Linear Ratings       | 20ns pulse @20mJ<br>for 3mm dia. beam<br>(damage) | CW density<br><5mA/mm <sup>2</sup><br>Pulse Density<br><20mA/mm <sup>2</sup> | <10mA         | CW current <2mA<br>Optical Input <3mW |
| Mounting (Tapped Holes)      | 8-32 or M4                                        | 8-32 or M4                                                                   | 8-32 or M4    | 8-32 or M4                            |
| Output Connector             | BNC                                               | BNC                                                                          | BNC           | BNC                                   |

a. Product specifications and pricing subject to change without notice.

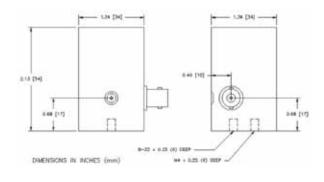


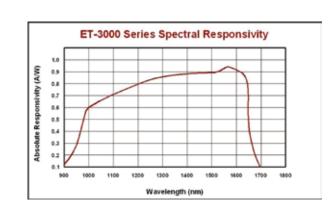


Laser Safety

## BIASED InGaAs PHOTODETECTOR




- All photodetectors come with their own internal or external
- · Available with optional FC or SMA input receptacle


#### **APPLICATIONS:**

- . Monitoring the output of Q-switched lasers
- Monitoring the output of mode-locked lasers
- Monitoring the output of externally modulated CW lasers
- · Time domain and frequency response measurements

| Model                        | ET-3000                                                 | ET-3010 ET-3020                  |                                                         | ET-3040                                                 |  |
|------------------------------|---------------------------------------------------------|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Detector Type                | PIN                                                     | PIN                              | PIN                                                     | PIN                                                     |  |
| Risetime                     | <175ps                                                  | <225ps                           | <6ps                                                    | <1.25ns                                                 |  |
| Falltime                     | <175ps                                                  | <225ps                           | <250ns                                                  | <3.70ns                                                 |  |
| Responsivity @1300nm         | 0.8A/W                                                  | 0.8A/W                           | 0.8A/W                                                  | 0.9A/W                                                  |  |
| Bias Voltage                 | 6V                                                      | 6V                               | Non-biased b                                            | 6V                                                      |  |
| Cut Off Frequency into 50Ω   | >2GHz                                                   | >1.5GHz                          | >2.5MHz                                                 | >50MHz                                                  |  |
| Active Area                  | 100µm 100µm 3.0mm dia.                                  |                                  | 3.0mm dia.                                              | 1.0mm dia.                                              |  |
| Dark Current                 | <1nA                                                    | <1nA                             | <2000nA                                                 | <20nA                                                   |  |
| Junction Capacitance         | <0.75pF <1.25pF                                         |                                  | <1300pF                                                 | <32pF                                                   |  |
| Reverse Breakdown Voltage    | Breakdown Voltage 25V 2                                 |                                  | 2V                                                      | 20V                                                     |  |
| Acceptance Angle (1/2 angle) | 20°                                                     | 50°                              | 50°                                                     | 50°                                                     |  |
| Noise Equivalent Power       | <0.1pW/√Hz                                              | <0.1pW/√Hz <1pW/√Hz              |                                                         | <0.1pW/√Hz                                              |  |
| Maximum Linear<br>Ratings    | CW current (damage)<br>5mA<br>CW power (damage)<br>20mW | CW current <5mA<br>CW power <5mW | CW current (damage)<br>5mA<br>CW power (damage0<br>20mW | CW current (damage)<br>5mA<br>CW power (damage0<br>20mW |  |
| Mounting (Tapped Holes)      | 8-32 or M4                                              | 8-32 or M4                       | 8-32 or M4                                              | 8-32 or M4                                              |  |
| Output Connector             | BNC                                                     | BNC                              | BNC                                                     | BNC                                                     |  |
| Fiber Optic Connector        | N/A                                                     | FC                               | N/A                                                     | N/A                                                     |  |

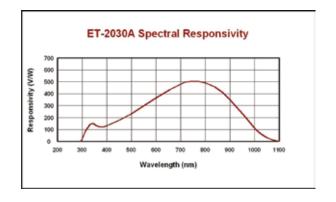
- a. Product specifications and pricing subject to change without notice.
- b. Operates in the photovoltaic mode.

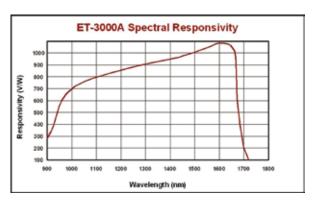




# 2GHz AMPLIFIED PHOTODETECTOR




- · Built-in transimpedance amplifier
- Optional FC input receptacle available


#### **APPLICATIONS:**

- . Monitoring high repetition rate, externally modulated CW
- Viewing <1mW</li>

| Model                              | ET-2030A       | ET-3000A        |
|------------------------------------|----------------|-----------------|
| Detector Material                  | Silicon        | InGaAs          |
| Risetime                           | <500ps         | <400ps          |
| Falltime                           | <500ps         | <400ps          |
| Responsivity                       | 450V/W @830nm  | 900V/W @ 1300nm |
| Power Supply                       | 24V            | 24V             |
| Frequency Response                 | 30kHz – 1.2GHz | 30kHz – 1.5GHz  |
| Active Area (dia.)                 | 400µm          | 100µm           |
| Acceptance Angle (1/2 angle)       | 10°            | 20°             |
| Noise Equivalent Power (pW/√Hz)    | <60            | <30             |
| Maximum Undistorted Output Voltage | 500mV p-p      | 400mV p-p       |
| Output Connector                   | BNC            | BNC             |
| Mounting (Tapped Hole)             | 8-32 and M4    | 8-32 and M4     |

- a. Product specifications and pricing subject to change without notice.
- b. Not suitable for CW applications.

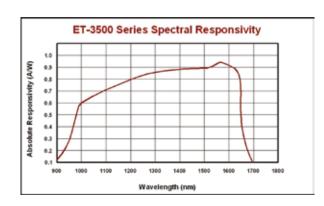


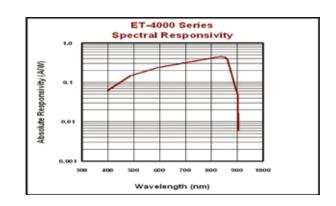


Laser Safety

## 10GHz PHOTODETECTOR




- Optional wall plug-in power supply available
- Typical frequency response for InGaAs models is >12.5GHz
- · Comes with internal 6V battery bias


#### **APPLICATIONS:**

- · Monitoring the output of externally modulated CW laser
- Monitoring the output of mode-locked lasers
- Time domain and frequency response measurements

| Model                   | ET-3500                       | ET-3500 ET-3500F |               | ET-4000F      |
|-------------------------|-------------------------------|------------------|---------------|---------------|
| Detector Type           | PIN                           | PIN              | PIN           | PIN           |
| Detector Material       | InGaAs                        | InGaAs           | GaAs          | GaAs          |
| Spectral Range          | 1000-1650nm                   | 1000-1650nm      | 400-900nm     | 400-900nm     |
| Risetime                | <35ps                         | <35ps            | <35ps         | <35ps         |
| Falltime                | <35ps                         | <35ps            | <35ps         | <35ps         |
| Responsivity            | onsivity 0.88A/W@1550nm 0.88A |                  | 0.45A/W@850nm | 0.45A/W@850nm |
| Bias Voltage            | 6V                            | 6V               | 6V 6V         |               |
| Cut Off Frequency       | >12.5GHz                      | >12.5GHz         | >10GHz        | >10GHz        |
| Active Area Dia.        | 32µm                          | 32µm             | 40µm          | 40µm          |
| Dark Current            | <3nA <3nA                     |                  | <200pA        | >200pA        |
| Junction Capacitance    | 0.12pF                        | 0.12pF           | 0.3pF         | 0.3pF         |
| Noise Equivalent Power  | <0.04pW/√Hz                   | <0.04pW/√Hz      | <0.02pW/√Hz   | <0.02pW/√Hz   |
| Max. Linear CW Power    | 10mW                          | 10mW             | 10mW          | 10mW          |
| Output Connector        | SMA                           | SMA              | SMA           | SMA           |
| Fiber Optic Connection  | N/A                           | FC/UPC           | N/A           | FC/UPC        |
| Mounting (Tapped Holes) | 8-32 or M4                    | 8-32 or M4       | 8-32 or M4    | 8-32 or M4    |

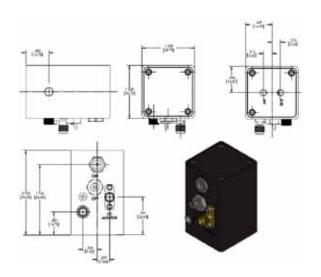
Notes: a. Product specifications and pricing subject to change without notice.

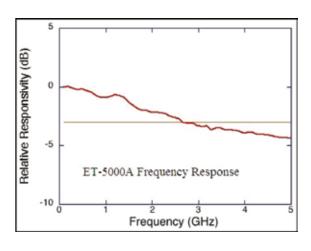




# $2^{\text{CHAPTER}} \, {}^{\text{3}}_{\text{PHOTONICS}} \\ 2^{\text{pm}} \, \text{AMPLIFIED HIGH SPEED DETECTOR}$




- Responsivity out to 2100nm
- Rise Time and Fall Time <250ps
- Available with free space or FC/UPC input


#### **APPLICATIONS:**

- Allows monitoring of Tm and Ho lasers
- Pulse width measurement of sub ns lasers
- Suitable for free space or fiber laser

| Model                       | ET-5000A           | ET-5000AF          |
|-----------------------------|--------------------|--------------------|
| Spectral Range              | 830 – 2100nm       | 830 – 2100nm       |
| Detector Material           | InGaAs             | InGaAs             |
| Detector Type               | PIN                | PIN                |
| Risetime                    | <250ps             | <250ps             |
| Falltime                    | <250ps             | <250ps             |
| Conversion Gain             | 1600 V/W at 2000nm | 1600 V/W at 2000nm |
| Bandwidth                   | 20kHz – 1.5GHz     | 20kHz – 1.5GHz     |
| Photodiode Active Area Dia. | 55μm               | 55µm               |
| NEP @ 2.0um:                | <20pW/sqrt(Hz)     | <20pW/sqrt(Hz)     |
| Power Supply                | 5V                 | 5V                 |
| Mounting (Tapped Hole)      | 8-32 or M4         | 8-32 or M4         |
| Fiber Optic Connection      | N/A                | FC/UPC (SMF-28e)   |

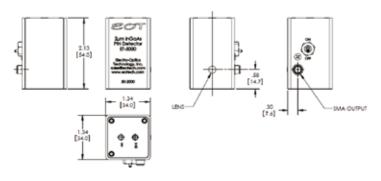
a. Product specifications and pricing subject to change without notice.

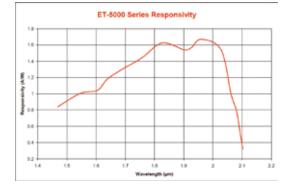


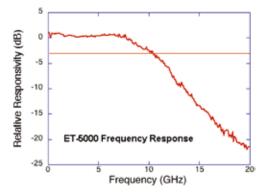


# 2μm HIGH SPEED DETECTOR




- Responsivity out to 2100nm
- Rise Time and Fall Time <35ps</li>
- Available with free space or FC/UPC input


#### **BENEFITS:**


- · Allows monitoring of Tm and Ho lasers
- · Pulse width measurement of sub ns lasers
- Suitable for free space or fiber laser

| Model                       | ET-5000           | ET-50000F         |
|-----------------------------|-------------------|-------------------|
| Spectral Range              | 830 – 2100nm      | 830 – 2100nm      |
| Detector Material           | InGaAs            | InGaAs            |
| Detector Type               | PIN               | PIN               |
| Risetime                    | <35ps             | <35ps             |
| Falltime                    | <35ps             | <35ps             |
| Responsivity                | 1.6 A/W at 2000nm | 1.6 A/W at 2000nm |
| Cutoff Frequency            | >10GHz            | >10GHz            |
| Photodiode Active Area Dia. | 40μm              | 40μm              |
| Dark Current                | <10µA             | <10µA             |
| NEP @ 2.0um:                | <20pW/sqrt(Hz)    | <20pW/sqrt(Hz)    |
| Power Supply                | 3V , battery      | 3V , battery      |
| Mounting (Tapped Hole)      | 8-32 or M4        | 8-32 or M4        |
| Fiber Optic Connection      | N/A               | FC/UPC (SMF-28)   |

Notes: a.Product specifications and pricing subject to change without notice.

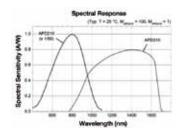






### CHAPTER 3 PHOTONICS **H**IGH SENSITIVITY AVALANCHE **DETECTORS**




- High-Speed Response up to 1 GHz
- Continuously Adjustable Gain
- 400-1000 nm and 850-1650 nm Wavelength Ranges Available
- SM05 Threaded for Lens Tube and Cage Assembly Integration

#### **APPLICATIONS:**

- Detection of Fast Laser Pulses
- · For Beat Signals of Low-Level Inputs
- LIDAR (Light Detection and Ranging)
- Testing of Optical Components

Menlo Systems' Avalanche Photodetector (APD) series provides an extremely lightsensitive alternative to traditional PIN photodiodes. The APDs are sensitive and fast enough for the characterization of pulsed lasers on the the order of nanoseconds. The silicon avalanche photodiode of the APD210 provides exceptional performance for low-light applications in the 400 - 1000 nm range, while the APD310 covers the InGaAs range of 850 - 1650 nm. The APD maintains high-gain stability over the operating temperature range by utilizing a temperature-compensation circuit, which adjusts the ~150 VDC bias to ensure operation near the breakdown voltage.

A 40 dB gain amplifier is integrated into the package and is AC-coupled to band the output BNC. The output is matched to 50  $\Omega$  impedance. The detector has an electronic width of 1 MHz to 1 GHz and offers a user-accessible potentiometer providing a continuous gain adjustment. The APD series has SM05 threads for easy integration into Thorlabs' entire family of lens tubes and cage assemblies. The bottom of the detector has a metric (M4) mounting hole and an M4 to #8-32 adapter for post mounting. The compact packaging allows the APD to be substituted directly into an existing setup while maintaining a small footprint on the benchtop. These photodetectors are not suitable for pulses longer than 30 ns or continuous light levels.



AC

|                         | APD210                       | APD310                         |
|-------------------------|------------------------------|--------------------------------|
| Optical Input           | Free Spacea                  | Free Spacea                    |
| Supply Voltage          | 12-15 V                      | 12-15 V                        |
| Current Consumption     | 200 m A                      | 200 m A                        |
| Max. Incident Power     | 10 mW                        | 10 mW                          |
| Operating Temperature   | 10-40 °C                     | 10-40 °C                       |
| Spectral Range          | 400-1000 nm                  | 850-1650 nm                    |
| Detector Diameter       | 0.5 mm                       | 0.03 mm                        |
| Frequency Range         | 1-1600 MHz                   | 1-1800 MHz                     |
| 3 dB Bandwidth          | 5-1000 MHz                   | 5-1000 MHz                     |
| Rise Time               | 500 ps                       | 500 ps                         |
| Maximum Gainb           | 2.5 x 105V/W @ 1 GHz, 800 nm | 2.5 x 104 V/W @ 1 GHz, 1500 nm |
| Dark State Noise Levelc | -80 dBm                      | -80 dBm                        |
| NEP (calculated)        | 0.4 pW/√Hz                   | 2 pW/√Hz                       |
| Output Connectors       | BNC                          | BNC                            |
| Output Impedance        | 50Ω                          | 50Ω                            |
| Device Dimensions       | 60 mm x 56 mm x 47.5 mm      | 60 mm x 56 mm x 47.5 mm        |

AC

**Output Coupling** 

Laser Safety

### CHAPTER 3 PHOTONICS DET SERIES PHOTO DETECTORS





#### **DET Series Features**

- High Speed Response
- Responsive from 150 to 2600nm
- Easy to Use
- Internal A23 +12V Bias Battery Included
- Low Profile Housing Minimizes Light Path Interference
- Includes Threaded Mount for 1" (25mm) Optics
- Compatible with SM1 & SM05 Series Products
- Battery Level Check Included

The DET-series detectors are compact, versatile, highspeed optical detectors. Each model comes complete with a fast PIN photodiode and an internal bias battery packaged in a rugged aluminum housing. With a wide bandwidth DC-coupled output, these detectors are ideal for monitoring fast-pulsed lasers as well as DC sources. The direct photodiode anode current is provided on a rear panel BNC. This output is easily converted to a positive voltage using a terminating resistor. We recommend a 50ohm load resistance for fastest response times.

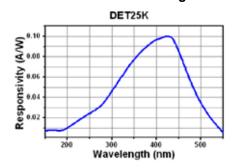
Each DET housing includes a detachable 1" Optic Mount (SM1T1) for installing Neutral Density Filters, spectral filters and lenses. The optical head is fully compatible with Thorlabs SM1-series and cage plate accessories. Thorlabs has decreased the package diameter to better fit our cage plate assemblies. Also available are fiber optic adapters for use with connectorized fiber.

| METRIC ITEM# | TYPE   | NEP1 (W/ √ Hz)          | RISE TIME   | ACTIVE AREA                       | SPECTRAL RANGE |
|--------------|--------|-------------------------|-------------|-----------------------------------|----------------|
| DET25K/M     | GaP    | 1.6 x 10 <sup>-14</sup> | 1 nsb       | 4.8mm <sup>2</sup> (2.2 x 2.2 mm) | 150-550nm      |
| DET36A/M     | Si     | 1.6 x 10 <sup>-14</sup> | 14ns (Max)  | 13mm <sup>2</sup> (3.6 x 3.6 mm)  | 350-1100nm     |
| DET10A/M     | Si     | 1.9 x 10 <sup>-14</sup> | 1ns (Max)   | 0.8mm <sup>2</sup> (Ø1 mm)        | 200-1100nm     |
| DET100A/M    | Si     | 5.5 x 10 <sup>-14</sup> | 43ns (Max)  | 75.4mm <sup>2</sup> (Ø.9.8 mm)    | 350-1100nm     |
| DET50B/M     | Ge     | 4 x 10 <sup>-12</sup>   | 440ns (Max) | 19.6mm <sup>2</sup> (Ø5.0mm)      | 800-1800nm     |
| DET10C/M     | InGaAs | 1.6 x 10 <sup>-14</sup> | 10ns (Max)  | 0.8mm <sup>2</sup> (Ø1.0mm)       | 700-1800nm     |
| DET10D/M     | InGaAs | 2 x 10 <sup>-12</sup>   | 25ns (Max)  | 0.8mm <sup>2</sup> (Ø1.0mm)       | 1200-2600nm    |

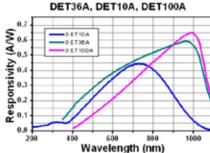
#### **Fiber Adaptor**

The SM1-Series fiber adapters thread directly onto DETSeries detectors for convenient attachment of fiber optics.

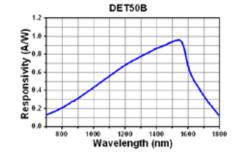
They can also be used with the SM1series stackable lens tubes.






| Item#  | Description |
|--------|-------------|
| SM1FC  | FC Adaptor  |
| SM1SMA | SMA Adaptor |
| SM1ST  | ST Adaptor  |


#### **GaP Detector - UV Wavelengths**



#### Si Detector - VIS Wavelengths



#### Ge Detector - NIR Wavelengths



## CHAPTER 3 PHOTONICS SWITCHABLE-GAIN PHOTODETECTOR



PDA36A Base assembly sold separately. **Power Supply** Included.

The new PDA series detector housing utilizes a thin profile to allow access to light paths with the minimum amount of interference. All connections and controls are located perpendicular to the light path providing increased accessibility.

Each PDA includes a low noise transimpedance or voltage amplifier and provides a 50& drive capability. The wideband models have a fixed gain and 150MHz bandwidth, while the switchable gain versions provide 70dB of adjustment.

New for the PDA line is the addition of IR detectors with the ability to detect light out to 4.8µm. These photoconductive sensors include an AC coupled amplifier with a fixed voltage gain of 100V/ V (50V/V with 50& load).

The new PDA series housing includes a removable threaded coupler that is compatible with any number of our SM1 and SM05 threaded accessories. This allows convenient mounting of external optics, light filters, and apertures, as well as providing an easy mounting mechanism when using our cage assembly accessories. Each housing provides two 8-32 tapped mounting holes (M4 for -EC versions) centered on the detector surface. A 120VAC AC/DC power supply is included.

| ITEM#   | SENSOR | BANDWIDTH          | WAVELENGTH<br>RANGE | ACTIVE<br>AREA                      | GAIN                                                     |
|---------|--------|--------------------|---------------------|-------------------------------------|----------------------------------------------------------|
| PDA25K  | GaP    | 7.5 MHz            | 150-550 nm          | 6.25 mm <sup>2</sup> (2.5 × 2.5 nn) | $1.5 \times 10^3$ to $4.75 \times 10^6$ V/A <sup>C</sup> |
| PDA10A  | Si     | 150 MHz            | 200-1100 nm         | 0.8 mm <sup>2</sup> (Ø1 nn)         | 1 × 10 <sup>4</sup> V/A                                  |
| PDA8A   | Si     | 50 MHz             | 320-1000 nm         | 0.5 mm <sup>2</sup> (Ø0.8 nn)       | 1 × 10 <sup>6</sup> V/A                                  |
| PDA36A  | Si     | 17 MHz             | 350-1100 nm         | 6.25 mm <sup>2</sup> (2.5 × 2.5 nn) | 1.5 × 103 to 4.75 × 106 V/A <sup>C</sup>                 |
| PDA100A | Si     | 1.5 MHz            | 400-1100 nm         | 13 mm $^2$ (3.6 × 3.6 nn)           | 1.5 × 103 to 4.75 × 106 V/A <sup>C</sup>                 |
| PDA10CF | InGaAs | 150 MHz            | 700-1800 nm         | 754 mm <sup>2</sup> (Ø9.8 nn)       | 1 × 10 <sup>4</sup> V/A                                  |
| PDA10CS | InGaAs | 17 MHz             | 700-1800 nm         | 0.2 mm <sup>2</sup> (0.5 nn)        | 1.5 × 103 to 4.75 × 106 V/A <sup>C</sup>                 |
| PDA50B  | Ge     | 400 KHz            | 800-1800 nm         | 19.6 mm <sup>2</sup> (Ø5 nn)        | 1.5 × 103 to 4.75 × 106 V/A <sup>C</sup>                 |
| PDA10D  | InGaAs | 15 KHz             | 1200-2600 nm        | 0.8 mm <sup>2</sup> (Ø1 nn)         | 1 × 10 <sup>4</sup> V/A                                  |
| PDA30G  | PbS    | 0.2 KHz to 1 kHzd  | 1000-2900 nm        | 9 mm <sup>2</sup> (3.0 × 3.0 nn)    | 100X                                                     |
| PDA20H  | PbSe   | 0.2 KHz to 10 kHzd | 1500-4800 nm        | 4 mm <sup>2</sup> (2.0 × 2.0 nn)    | 100X                                                     |



#### SM1FC

Fiber Adapters

The SM1-Series fiber adapter thread directly onto PDA Series detectors for convenient attachment of fiber optics. They can also be used with the SM1-series stackable lens tubes.

| ITEM# | DESCRIPTION        |
|-------|--------------------|
| SM1FC | FC Adapter         |
| T4119 | In-Line Terminator |

#### **PDA Series Features**

- GaP, Si, Ge, InGaAs, PbS, and PbSe Versions Available
- Our line of PDAs Cover A Wide Wavelength Range from 150nm to 4800nm
- Up to DC-150MHz Bandwidth
- High-Speed PIN Photodiode
- Low-Noise, Wide Band Amplifier
- 0 to 10V Output
- Includes Threaded Mount for 1" (25mm) Optics
- Compatible with SM1 Series and SM05 Series Products

- 15 Models to Choose From
- InGaAs, Silicon, Ge or GaP Photodiodes
- Ideal for Measuring Pulsed and CW Sources
- Mounted in SM05 or SM1 Threaded Tubes





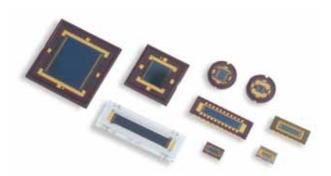
#### SM05-Threaded Mounted Photodiodes, Cathode Grounded

| Item #   | Detector | Rise/Fall<br>Time (ns) | Active Area<br>(Dimensions)       | NEP<br>(W/vHz)          | Dark<br>Current | Spectral<br>Range (nm) | Material | Junction Capacitancea |
|----------|----------|------------------------|-----------------------------------|-------------------------|-----------------|------------------------|----------|-----------------------|
| SM05PD7A | FGAP71   | 1 / 140                | 4.8 mm <sup>2</sup> (Ø2.5 mm)     | 1.0 x 10 <sup>-14</sup> | 10 nA           | 150-550                | GaP      | -                     |
| SM05PD2A | FDS010   | 1                      | 0.8 mm <sup>2</sup> (Ø1.0 mm)     | 5.0 x 10 <sup>-14</sup> | 2.5 nA          | 200-1100               | Si       | 10 pF @ 0 V           |
| SM05PD1A | FDS100   | 20                     | 13 mm <sup>2</sup> (3.6 x 3.6 mm) | 1.2 x 10 <sup>-14</sup> | 20 nA           | 350-1100               | Si       | 20 pF @ 1V            |
| SM05PD4A | FGA10    | 12                     | 0.8 mm <sup>2</sup> (Ø1.0 mm)     | 1.0 x 10 <sup>-14</sup> | 25 nA           | 800-1800               | InGaAs   | 80 pF @ 0 V           |
| SM05PD5A | FGA21    | 66/ 66                 | 3.1 mm <sup>2</sup> (Ø2.0 mm)     | 3.0 x 10 <sup>-14</sup> | 200 nA          | 800-1800               | InGaAs   | 500 pF @ 0 V          |
| SM05PD6A | FDG03    | 1400                   | 7.1 mm <sup>2</sup> (Ø3.0 mm)     | 1.0 x 10 <sup>-12</sup> | 4.0 µA          | 800-1800               | Ge       | 4 nF @ 1V             |

#### SM05-Threaded Mounted Photodiodes, Anode Grounded

| Item #   | Detector | Rise/Fall<br>Time (ns) | Active Area<br>(Dimensions)       | NEP<br>(W/vHz)          | Dark<br>Current | Spectral<br>Range (nm) | Material | Junction Capacitancea |
|----------|----------|------------------------|-----------------------------------|-------------------------|-----------------|------------------------|----------|-----------------------|
| SM05PD1B | FDS100   | 20                     | 13 mm <sup>2</sup> (3.6 x 3.6 mm) | 1.2 x 10 <sup>-14</sup> | 20 nA           | 350-1100               | Si       | 20 pF @ 1 V           |
| SM05PD2B | FDS010   | 1                      | 0.8 mm <sup>2</sup> (Ø1.0 mm)     | 5.0 x 10 <sup>-14</sup> | 2.5 nA          | 200-1100               | Si       | 10 pF @ 0 V           |

#### SM1-Threaded Mounted Photodiodes, Cathode Grounded


| Item #  | Detector | Rise/Fall<br>Time (ns) | Active Area<br>(Dimensions)     | NEP<br>(W/vHz)          | Dark<br>Current | Spectral<br>Range (nm) | Material | Junction Capacitancea |
|---------|----------|------------------------|---------------------------------|-------------------------|-----------------|------------------------|----------|-----------------------|
| SM1PD2A | -        | 45                     | 63.6 mm <sup>2</sup>            | 9.1 x 10 <sup>-14</sup> | 1.0 µA          | 200-1100               | UV Si    | 1750 pF @ 0V          |
| SM1PD1A | FDS1010  | 45                     | 63.6 mm <sup>2</sup> (Ø9.0 mm)  | 5.5 x 10 <sup>-14</sup> | 600 nA          | 400-1100               | Si       | 375 pF @ 5V           |
| SM1PD5A | -        | 3500                   | Ø9.0 mm (63.6 mm <sup>2</sup> ) | 4 x 10 <sup>-14-2</sup> | 50 µA           | 800-1800               | Ge       | -                     |

#### SM1-Threaded Mounted Photodiode, Anode Grounded

| Item #  |         | Rise/Fall<br>Time (ns) |   | NEP<br>(W/vHz)          | Dark<br>Current | Spectral<br>Range (nm) | Material | Junction<br>Capacitancea |
|---------|---------|------------------------|---|-------------------------|-----------------|------------------------|----------|--------------------------|
| SM1PD1B | FDS1010 | 45                     | _ | 5.5 x 10 <sup>-14</sup> | 600 nA          |                        |          | 375 pF @ 5 V             |

# POSITION SENSING DETECTORS

#### For Non-Contact Measurement Of Position, Motion, Distance And Vibration



#### **Features**

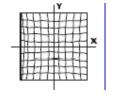
- Superior Linearity—Better Than 99.95% Over 80% of ActiveArea
- Proven Analog Resolution Better Than 1 Part Per Million
- Low Thermal Drift, Less Than 40 ppm/°C
- Fast Response Time
- Simultaneous Position and Intensity Measurement
- Wide Spectral Range
- Independent of Light Spot Size

| Model          | Active<br>Area   | Responsivity @ 940 nm | Dark C | urrent<br>A | Noise C |     |      | itance<br>015V | Rise T<br>10-90° |     |
|----------------|------------------|-----------------------|--------|-------------|---------|-----|------|----------------|------------------|-----|
|                | mm               | A/W                   | Тур.   | Max         | Тур.    | Max | Тур. | Max            | Тур.             | Max |
| One Dimension  | al PSD Series    |                       |        |             |         |     |      |                |                  |     |
| 1L2.5SP        | 2.5 x 0.6        | 0.63                  | 2      | 10          | 0.4     | 1.0 | 1.6  | 2.0            | .03              | .05 |
| 1L5SP          | 5.0 x 1.0        | 0.63                  | 4      | 20          | 0.4     | 1.0 | 5    | 6              | .05              | .08 |
| 1L10           | 10.0 x 2.0       | 0.63                  | 8      | 50          | 0.4     | 1.0 | 15   | 20             | .20              | .40 |
| 1L20           | 20.0 x 3.0       | 0.63                  | 50     | 250         | 0.5     | 1.0 | 45   | 55             | .50              | 1.0 |
| 1L30           | 30.0 x 4.0       | 0.63                  | 150    | 1000        | 0.5     | 1.0 | 90   | 110            | 1.0              | 1.8 |
| 1L45           | 45 x 3.0         | 0.63                  | 110    | 1500        | 0.4     | 0.9 | 105  | 125            | 2.7              | 4.2 |
| 1L60           | 60 x 3.0         | 0.63                  | 150    | 2000        | 0.4     | 1.0 | 135  | 160            | 4.5              | 8.5 |
| One Dimensiona | I PSD SeriesWith | Stray Light Elimi     | nation |             |         |     |      |                |                  |     |
| 1L5NT          | 5.0 x 0.25       | 0.63                  | 4      | 20          | 0.3     | 0.6 | 5    | 6              | .25              | .40 |
| 1L10NT         | 10.0 x 0.5       | 0.63                  | 8      | 50          | 0.3     | 0.6 | 15   | 20             | 0.7              | 1.4 |
| Two Dimensiona | I PSD Series—Du  | uolateral             |        |             |         |     |      |                |                  |     |
| 2L2SP          | 2.0 x 2.0        | 0.63                  | 50     | 200         | 1.3     | 2.5 | 7    | 8              | .03              | 0.6 |
| 2L4SP          | 4.0 x 4.0        | 0.63                  | 50     | 200         | 1.3     | 2.5 | 20   | 25             | .08              | .16 |
| 2L10SP         | 10.0 x 10.0      | 0.63                  | 100    | 500         | 1.3     | 2.5 | 90   | 110            | .40              | .80 |
| 2L20SP         | 20.0 x 20.0      | 0.63                  | 200    | 2000        | 1.5     | 3.5 | 360  | 430            | 1.6              | 3.0 |
| 2L45           | 45 x 45.0        | 0.63                  | 400    | 4000        | 1.5     | 3.5 | 1600 | 2000           | 7                | 14  |

Laser Apertures

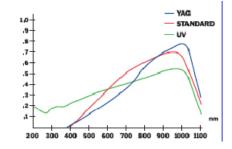
### CHAPTER 3 PHOTONICS

#### **PSD General Description**


We offers a broad range of Position Sensing Detectors (PSD) that enable you to simultaneously monitor position and light intensity.

Ideal for non-contact measurement of position, motion, distance and vibration, all devices are silicon-based detectors that provide an analog output directly proportional to the position of a light spot on the detector's active area.

The continuous analog-output of silicon-based detectors provides numerous advantages over discrete element devices. These advantages include superior position linearity, unsurpassed analog resolution, faster response time and simpler operating circuits.


For more information on Position Sensing Detectors, and how they can benefit your particular application, please call us.





On-Trak Duolateral PSD Linearity (typical)

Competitor PSD PSD Linearity (typical)



|     | Reverse Bias<br>V |     | R   | Detector<br>esistance (k Ω | )   | Therma |     | Position No | on-Linearity |
|-----|-------------------|-----|-----|----------------------------|-----|--------|-----|-------------|--------------|
| Min | Тур.              | Max | Min | Тур.                       | Max | Тур.   | Max | Тур.        | Max          |
|     |                   |     |     |                            |     |        |     |             |              |
| 5   | 15                | 20  | 40  | 50                         | 80  | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 40  | 50                         | 80  | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 40  | 50                         | 80  | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 40  | 50                         | 80  | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 40  | 50                         | 80  | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 90  | 115                        | 150 | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 12  | 150                        | 200 | 20     | 100 | 0.1         | 0.2          |
|     |                   |     |     |                            |     |        |     |             |              |
| 5   | 15                | 20  | 160 | 200                        | 300 | 20     | 100 | 0.1         | 0.2          |
| 5   | 15                | 20  | 160 | 200                        | 300 | 20     | 100 | 0.1         | 0.2          |
|     |                   |     |     |                            |     |        |     |             |              |
| 5   | 15                | 20  | 7   | 10                         | 16  | 40     | 200 | 0.3         | 1.0          |
| 5   | 15                | 20  | 7   | 10                         | 16  | 40     | 200 | 0.3         | 0.8          |
| 5   | 15                | 20  | 7   | 10                         | 16  | 40     | 200 | 0.3         | 0.8          |
| 5   | 15                | 20  | 7   | 10                         | 16  | 40     | 200 | 0.3         | 0.8          |
| 5   | 15                | 20  | 7   | 10                         | 16  | 40     | 200 | 0.3         | 1.0          |

## POSITION SENSING MODULES

#### For Non-Contact Measurement Of: Position, Motion, Distance And Vibration



#### **Features**

- Fully Packaged Position Sensing Detectors
- Silicon Linear: 400-1100 nm Silicon Duolateral: 400-1100 nm Silicon Quadrant: 400-1100 nm GermaniumTetra-Lateral: 800-1800 nm
- Removable Filter Holder Adapter
- **Standard Mounting Holes**
- Plug and Play Compatibility with all the
- Position Sensing Amplifiers

#### PSM Series Position Sensing Modules. Plug-And-Play Precision

Position Sensing Modules are fully packaged position sensing detectors that, when used with an On-Trak position sensing amplifier, provide an analog output directly proportional to the position of a light spot on the detector active area.

Yet, what truly sets them apart is heir proprietary, plug-and-play design. Never has position sensing been so convenient...or accurate.

#### Finally, APlug-And-Play Solution.

No more hassling with breadboards, soldering, cutting and wiring. Instead, all Positron Sensing Modules (PSMs) incorporate a subminiature 9-pin connector that plugs directly into any Position Sensing Amplifier.

Just plug it in and go. It's that simple

#### Single, Duolateral, Quadrant.

Select from several distinct configurations; each module contains a linear, duolateral, tetralateral, or quadrant position sensing detector. All



modules are conveniently packaged to allow simultaneous monitoring of position and light intensity. Position Sensing Modules come in two package sizes: Standard and Compact. The standard measures 2.8" x 2.45" x 1.125". The ompact measures 1.25" x 1.25" x 0.975".

#### Filters And Filter Holder Adapters.

Harsh ambient lighting conditions? No problem. Each module readily accepts a complete range of optional filters toreduce the effect of noise caused by ambient light. Moreover, a filter holder is included with each module at no extra cost.

#### Standard Mounting Holes.

All PSMs feature standard mounting holes for easy mounting with your existing lab equipment. Whether your post and stands are 1/4 -20 or 8/32, you'll be up and running in a matter of minutes.

#### Robust Aluminum Housings.

The Position Sensing Modules are encased in rugged aluminum housings to protect your investment.

#### **PSM Specifications**

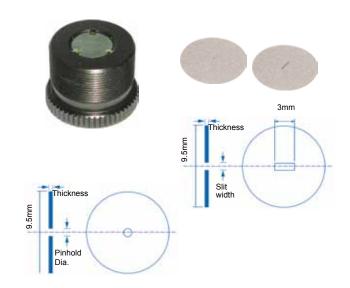
CHAPTER 3 PHOTONICS

| Model     | Active<br>Area (mm) | Detector<br>Type                     | Wavelength Range | Package<br>Type | Typ.<br>Resolution | Typ.<br>Linearity |
|-----------|---------------------|--------------------------------------|------------------|-----------------|--------------------|-------------------|
| PSM 1-2.5 | 2.5 x 0.6           | Linear Silicon                       | 400-1100 nm      | Compact         | 62.5 nm            | 0.1%              |
| PSM 1-5   | 5.0 x 1.0           | Linear Silicon                       | 400-1100 nm      | Compact         | 125 nm             | 0.1%              |
| PSM 1-10  | 10.0 x 2.0          | Linear Silicon                       | 400-1100 nm      | Standard        | 250 nm             | 0.1%              |
| PSM 1-20  | 20.0 x 3.0          | Linear Silicon                       | 400-1100 nm      | Standard        | 500 nm             | 0.1%              |
| PSM 1-30  | 30.0 x 4.0          | Linear Silicon                       | 400-1100 nm      | Standard        | 750 nm             | 0.1%              |
| PSM 2-2   | 2.0 x 2.0           | Duolateral Silicon                   | 400-1100 nm      | Compact         | 50 nm              | 0.3%              |
| PSM 2-4   | 4.0 x 4.0           | Duolateral Silicon                   | 400-1100 nm      | Compact         | 100 nm             | 0.3%              |
| PSM 2-4Q  | 4.0 x 4.0           | Quadrant Silicon                     | 400-1100 nm      | Compact         | 100 nm             | N/A*              |
| PSM 2-5G  | 5.0 x 5.0           | Pincushion Tetralateral Germanium    | 800-1800 nm      | Compact         | 5 ģm               | _                 |
| PSM 2-10  | 10.0 x 10.0         | Duolateral Silicon                   | 400-1100 nm      | Standard        | 250 nm             | 0.3%              |
| PSM 2-10Q | 9.0 x 9.0           | Quadrant Silicon                     | 400-1100 nm      | Standard        | 100 nm             | N/A*              |
| PSM 2-10G | 10.0 x 10.0         | Pincushion Tetralateral<br>Germanium | 800-1800 nm      | Standard        | 5 ģm               | _                 |
| PSM 2-20  | 20.0 x 20.0         | Duolateral Silicon                   | 400-1100 nm      | Standard        | 500 nm             | 0.3%              |
| PSM 2-45  | 45.0 x 45.0         | Duolateral Silicon                   | 400-1100 nm      | Standard        | 1.25 ģm            | 0.3%              |



#### **PSM Accessories**

| Model       | Description                                   |
|-------------|-----------------------------------------------|
| F12.5-632.2 | 12.5 mm optical filter. 632.8 nm, +2.0/-0 nm. |
|             | FWHM 10 + 2 nm. 50% transmittance             |
| F25-632.8   | 25 mm optical filter. 632.8 nm, +2.0/-0 nm.   |
|             | FWHM 10 + 2 nm. 50% transmittance             |
| F12.5-635   | 12.5 mm optical filter. 635 nm, +5.0/-0 nm.   |
|             | FWHM 10 + 2 nm. 50% transmittance             |
| F25-635     | 25 mm optical filter. 635 nm, +5.0/-0 nm.     |
|             | FWHM 10 + 2 nm. 50% transmittance             |
| F12.5-670   | 12.5 mm optical filter. 670 nm, +3.0/-0 nm.   |
|             | FWHM 10 + 2 nm. 50% transmittance             |
| F25-670     | 25 mm optical filter. 670 nm, +3.0/-0 nm.     |
|             | FWHM 10 + 2 nm. 50% transmittance             |
| F12.5-HA    | 12.5 mm Blank Filter Holder Adapter           |
| F25-HA      | 25 mm Blank Filter Holder Adapter             |
| CA-DB9MM-5  | 5 foot molded cable. DB9 connector            |
| CA-SC10FR-3 | 3 foot ribbon cable. 10 pin socket connector. |
|             | Unterminated                                  |
| PS-3        | Post and Stand                                |
|             |                                               |


Shutters

## CHAPTER 3 PHOTONICS LASER APERTUERS

#### **Precision Pinholes**

| Model No. | Diameter | Tolerance | Thickness |
|-----------|----------|-----------|-----------|
| IP001     | 1µm      | ±1/2µm    | 0.0005"   |
| IP002     | 2µm      | ±1/2μm    | 0.0005"   |
| IP005     | 5µm      | ±1µm      | 0.0005"   |
| IP008     | 8µm      | ±1µm      | 0.0005"   |
| IP010     | 10µm     | ±1µm      | 0.0005"   |
| IP012     | 12.5µm   | ±5µm      | 0.0005"   |
| IP015     | 15µm     | ±5µm      | 0.0005"   |
| IP020     | 20µm     | ±5µm      | 0.0005"   |
| IP025     | 25µm     | ±5µm      | 0.0005"   |
| IP035     | 35µm     | ±5µm      | 0.001"    |
| IP050     | 50µm     | ±5µm      | 0.001"    |
| IP100     | 100µm    | ±5µm      | 0.001"    |
| IP200     | 200µm    | ±5µm      | 0.001"    |
| IP300     | 300µm    | ±5µm      | 0.001"    |
| IP400     | 400µm    | ±5µm      | 0.001"    |
| IP500     | 500µm    | ±5µm      | 0.001"    |
| IP600     | 600µm    | ±5µm      | 0.001"    |
| IP800     | 800µm    | ±5µm      | 0.001"    |
| IP900     | 900µm    | ±5µm      | 0.001"    |
| IP1000    | 1000µm   | ±5µm      | 0.001"    |
| IP1000    | 1000µm   | ±5µm      | 0.001"    |

Stainless Steel, 3/8" (9.5mm) Dia., high quality aperture centered to ±0.002" (50 micron). Typical applications include leak detection, aerosol studies, laser aperturing, holography, fiber optics guides, spatial filtering, and research.



#### **High Power Apertures**

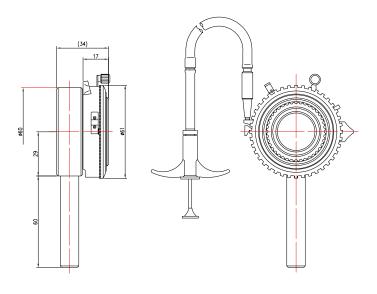
Gold plated copper disc, 3/8" (9.5mm) Dia., aperture is centered to ±0.005". Specifically used for laser aperturing of Nd:Yag and CO2 lasers. One side of aperture is gold on polished copper for high reflectivity. The aperture thickness can withstand and quickly dissipate increased irradiation from high energy lasers. Densities as high as 100MW/cm2 have been used without damage to the aperture-making it the best to hold off laser power for aperturing and spatial filtering.

#### **Precision Air Slits**

Used in optical systems and educational efforts. By scanning across the focal point, MTF and point spread function can be calculated. More commonly used in light aperturing, spectrophotometer image analysis, and various optical experiments. 3/8" (9.5mm) stainless steel disc.

| Model No. | Diameter | Tolerance | Thickness |
|-----------|----------|-----------|-----------|
| IPH005    | 5µm      | ±10%      | 0.0005"   |
| IPH010    | 10µm     | ±10%      | 0.0005"   |
| IPH025    | 25µm     | ±10%      | 0.0005"   |
| IPH035    | 35µm     | ±10%      | 0.0005"   |
| IPH050    | 50µm     | ±10%      | 0.0005"   |
| IPH100    | 100µm    | ±5%       | 0.0005"   |
| IPH200    | 200µm    | ±5%       | 0.0005"   |
| IPH500    | 500µm    | ±5%       | 0.0005"   |
| IPH1000   | 1000µm   | ±5%       | 0.0005"   |

| Model No. | Slit Width | Slit Length | Substrate<br>Thickness |
|-----------|------------|-------------|------------------------|
| IPS005    | 5μm±1μm    | 3mm         | 0.0005"                |
| IPS010    | 10μm±1μm   | 3mm         | 0.0005"                |
| IPS025    | 25µm±3µm   | 3mm         | 0.0005"                |
| IPS050    | 50μm±5μm   | 3mm         | 0.0005"                |
| IPS075    | 75μm±5μm   | 3mm         | 0.0005"                |
| IPS100    | 100μm±5μm  | 3mm         | 0.0005"                |
| IPS200    | 200μm±5μm  | 3mm         | 0.0005"                |
| IPS500    | 500µm±5µm  | 3mm         | 0.0005"                |
| IPS1000   | 1000μm±5μm | 3mm         | 0.0005"                |


## MECHANICAL SHUTTER

- The holder is available to use for opened and shut of optical path for laser beam
- The holder is available to use remote-operated by release(L=150mm)
- Shutter speed is available set up T, B, 1, 1/2 1/500
- T command will be open shutter when release was hold, and the shutter will be shut when release was re-hold
- B command will be open during holding the release.
- The holder is available to use with our post systems.



| Model No. | Aperture Diameter<br>MaxΦ(mm)<br>MinΦ(mm) | Shutter speed (second)       | Number of Blades(pcs) | MATERIAL | Finish | Weight(kg) |  |
|-----------|-------------------------------------------|------------------------------|-----------------------|----------|--------|------------|--|
| SHH       | 24                                        | T,B,1,1/2,1/4,1/8,1/15,1/30, | 5                     | AL       | BAL    | 0.28       |  |
| JIII      | 1.5                                       | 1/60.1/125.1/250.1/500       | 3                     | AL       | DAL    | 0.20       |  |





## SHUTTER SYSTEMS



















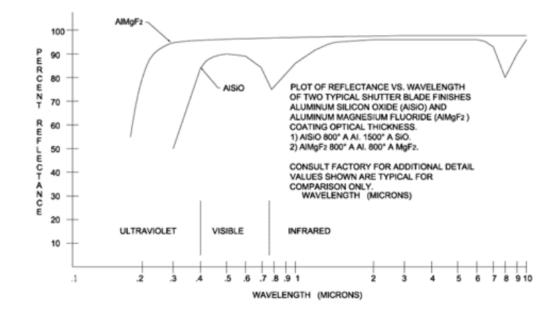




|                                                                                                                                                                                                                                                                                                                                                                                                                               | Model  | Aperture | Time to Open |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------|
| CS Series (Unique Patented Design)  -Applications: Video Imaging, Telescopy, Microscopy, and Holography -Long Lifetime -Small Size to Aperture Ratio                                                                                                                                                                                                                                                                          | CS25   | 25 mm    | 9.0 msec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | CS35   | 35 mm    | 13.0 msec    |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | CS45   | 45 mm    | 14.0 msec    |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | CS65   | 65 mm    | 29.0 msec    |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | CS90   | 90 mm    | 70.0msec     |
| DSS Series  - There are no protruding components allowing flush mounting on either side of the device.  - Circular envelope and concentric aperture allow for easy and fast integration into customer specific applications.  - Simplicity of design allows for unprecedented ease of scaling from apertures as small as 10mm.                                                                                                | DSS10  | 10 mm    | 5.0 msec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | DSS20  | 20 mm    | 12.5 msec    |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | DSS25  | 25 mm    | 12.6 msec    |
| LS Series (Laser Switching)  -Applications: Video Imaging, Telescopy, Microscopy, and Holography  - Operation Frequency up to 400 Hz                                                                                                                                                                                                                                                                                          | LS2    | 2 mm     | 300 µsec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | LS3    | 3 mm     | 500 µsec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | LS6    | 6 mm     | 700 µsec     |
| NS Series (N-CAS® Patent Pending Design)  -Features patent pending Non-Contact Actuation System (N-CAS) to provide accurate and reliable shutter operation  -Versatile design allows for shutters to be easily configured bi-stable, normally open or normally closed  -Five bladed design minimizes outside diameter to fit where space is at a premium  -Machined aluminum body allows for direct mounting to flat surfaces | NS15B  | 15 mm    | 3.0 msec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | NS25B  | 25 mm    | 5.0 msec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | NS25S  | 25 mm    | 5.0 msec     |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | NS35B  | 35 mm    | 12.0 msec    |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | NS45B  | 45 mm    | 12.0 msec    |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | NSR25S | 25 mm    | 5.0 msec     |
| TS Series - Single bladed design along with bi-stable configuration, only requiring power to change state - Alternate blade material can be made available by special order for x-ray or other unique customer applications - There are no protruding components allowing flush mounting on either side of the device.                                                                                                        | TS6B   | 6 mm     | 1.7 msec     |

| - Circular envelope and concentric aperture allow for easy and fast integration into |
|--------------------------------------------------------------------------------------|
| customer specific applications.                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |

#### **VS Series** VS14 1.5 msec 14 mm -Applications: Video Imaging, Telescopy, Microscopy, and Holography VS25 25 mm 3.0 msec - Ideal For Custom Applications VS35 13.0 msec 35 mm - Fast Open Times


| XRS Series (X-RAY Shutter)                                        | XRS14 | 14 mm | 20.0 msec |
|-------------------------------------------------------------------|-------|-------|-----------|
| - Applications: X-Ray Switching                                   | XRS25 | 25 mm | 10.0 msec |
| <ul> <li>Capable of Blocking up to 30 keV Continuously</li> </ul> | XRS6  | 6 mm  | 20.0 msec |
|                                                                   |       |       |           |

## CHAPTER 3 PHOTONICS COATING AND MOUNTING OPTIONS FOR SHUTTER SYSTEMS

| SHUTTER |       | VIOLET<br>microns) |          | BLE<br>(microns) | INFR/<br>.75106μm |           |
|---------|-------|--------------------|----------|------------------|-------------------|-----------|
| MODEL   | AISiO | AIMgF2             | AISiO    | AIMgF2           | AISiO             | AIMgF2    |
| BDS25   | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| CS25    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| CS35    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| CS45    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| CS65    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| CS90    | N/A   | N/A                | N/A      | N/A              | N/A               | N/A       |
| LS2     | N/A   | 2.5 W/mm2          | 5 W/mm2  | 2.5 W/mm2        | 2.5 W/mm2         | 2.5 W/mm2 |
| LS3     | N/A   | 2.5 W/mm2          | 5 W/mm2  | 2.5 W/mm2        | 2.5 W/mm2         | 2.5 W/mm2 |
| LS6     | N/A   | 2.5 W/mm2          | 5 W/mm2  | 2.5 W/mm2        | 2.5 W/mm2         | 2.5 W/mm2 |
| QCS45   | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| UHS1    | N/A   | 2.5 W/mm2          | 5 W/mm2  | 2.5 W/mm2        | 2.5 W/mm2         | 2.5 W/mm2 |
| VS14    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 10 W/mm2          | 5 W/mm2   |
| VS25    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| VS35    | N/A   | 5 W/mm2            | 10 W/mm2 | 5 W/mm2          | 5 W/mm2           | 5 W/mm2   |
| XRS14   | N/A   | N/A                | N/A      | N/A              | N/A               | N/A       |
| XRS25   | N/A   | N/A                | N/A      | N/A              | N/A               | N/A       |
| XRS6    | N/A   | N/A                | N/A      | N/A              | N/A               | N/A       |

#### **Mounts by Type**

| * 100 Mounting Ring,                   | * 101 Mounting Ring                           | * 102 Mounting Ring                      |  |
|----------------------------------------|-----------------------------------------------|------------------------------------------|--|
| * 103 Mounting Ring                    | * 105 Male C Mount Adapter                    | * 106 Female C Mount Adapter             |  |
| * 110 T Mount Adapter                  | * 125 Camelia Adapter                         | * 126 F Type Male Adapter                |  |
| * 127 Dalstar Adapter                  | * 128 Cooke Adapter                           | * 17 CS25 F Type Female Video Adapter    |  |
| * 17 CS35 F Type Female Video Adapter  | 17 CS45 F Type Female Video Adapter           | * 17 VS14/25 F Type Female Video Adapter |  |
| * 17 VS35 F Type Female Video Adapter  | * 21 Zeiss Axiovert Type Microscope Mount Set | * 22 Nikon Type Microscope Mount Set     |  |
| * 23 Olympus Type Microscope Mount Set | * 24 Olympus Type Microscope Mount Set        | * 26 Leica Type Mount Set                |  |
| * 27 Nikon Type Microscope Mount Set   | * 28 Olympus Type Mount Set                   | * 29 Nikon Type Mount Set                |  |
| * 30 Leica Type Mount Set              | * 31 Nikon/Confocal Type Mount Set            | * 32 Nikon Type Microscope Mount Set     |  |
| * 90 Mounting Ring                     |                                               |                                          |  |



If you have quesions for coating and mounting on shutters systems, please contact ONSET sales members.

Laser Apertures

## DRIVERS FOR SHUTTER SYSTEMS

#### D880C



ED12DSS



N-CAS VDM1000 Single Channel CE/ **UL/CSA Approved Shutter Driver** 



#### N-CAS VDM1000B Open Frame Drive Controller



VCM-D1 Single Channel CE/UL/ **CSA Approved Shutter Driver** 



VMM-D3 Three Channel **Shutter Driver** 



VMM-D4 Four Channel Shutter Driver



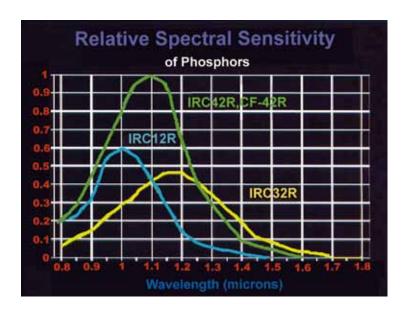
VMM-T1 Single Channel Shutter Driver/ Timer



## CHAPTER 3 PHOTONICS INFRARED SENSITIVE CARD



#### **FEATURE**


- Low Cost
- Reusable
- Safe non-direct view of laser
- Safe to use up 100W/cm<sup>2</sup> power density
- Spectrally specific models

Infrared sensitive phosphor cards enable users of infrared optical devices an easy way to locate laser beams and estimate beam size, trouble-shoot areas and test infrared emitting devices. The easy-to-use cards consist of an

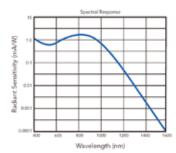
IR-sensitive phosphor material(2"x2") laminated in clear plastic. After being exposed to room light(400-500nm) for about one minute (for activation of the phosphor), these cards will emit a visible glow when illuminated by infrared light. The intensity of the glow is in proportional with the intensity of the infrared illumination.

For use with high-powered laser beams, the model CF-42R and CF-16R cards are recommended for use with Nd:YAG (1.06µm) and CO² (10.6µm) laser beams, respectively. The CF-42R and CF-16R are designed with a 2" round phosphor material mounted on a ceramic substrate in order to dissipate the resulting heat. These cards can be used with beams having up to 100W/cm² power density.

| Model  | Spectral<br>Range (µm) | Required<br>Dark     | Intensity<br>Required | Resolution (Lp/mm) | Ideal Sources      |
|--------|------------------------|----------------------|-----------------------|--------------------|--------------------|
| IRC12R | 0.7-1.4                | 12µW/cm <sup>2</sup> | 500μW/cm <sup>2</sup> | 3                  | 0.7-08µm sources   |
| IRC42R | 071.6                  | 3µW/cm <sup>2</sup>  | 200µW/cm <sup>2</sup> | 3                  | 0.8-1.3µm sources  |
| IRC32R | 0.8-1.7                | 6µW/cm <sup>2</sup>  | 800µW/cm <sup>2</sup> | 3                  | 1.55µm sources     |
| CF-16R | 10.6                   | 1W/cm <sup>2</sup>   | 50µW/cm <sup>2</sup>  | 3                  | Hi-power CO2 laser |
| CF-42R | 0.7-1.6                | 30µW/cm <sup>2</sup> | 500μW/cm <sup>2</sup> | 3                  | Hi-power YAG laser |



## CHAPTER 3 PHOTONICS NFRARED VIEWER


#### **APPLICATIONS:**

- Observation of GaAs laser diodes and IR LEDs
- Beam alignment (e.g. Nd:YAG, Ti: Sapphire)
- Thermal imaging of obects 600°C (1112°F) and hotter
- View in-the-dark processes
- Forensic analysis of inks, pigments
- Sub-surfa wafer inspection (Si, GaAs)

#### CONVERTS 0.41-1.5µm RADIATION TO VISIBLE

ElectroViewer 7215 is a high-performance, hand-held • Excellent image quality Infrared Viewer designed to meet the requirements of viewing in the near-IR wavelength range. Unlike any other infrared imaging device, the ElectroViewer delivers an

image that is remarkably bright. And with focusing as close as 3 inches, the ElectroViewer is • Interfaces to CCTV cameras the perfect tool for in-the-lab and in-the-field.



- Bright, high-contrast image
- Focuses as close as 3"
- Adustable iris included
- Accepts C-mount lenses
- Rugged and shock-proof design

#### **OPERATION**

The ElectroViewer is powered by pressing and maintaining the push-button switch. The obective lens, adusted for obects at distances from 3" to infi nity, brings the scene into sharp focus, producing a bright, green fl uorescent image seen through the

High-resolution images are generated in accordance with the incident intensity of the radiation and the S-1 spectral responsivity of the photocathode material (see Spectral Response characteristic)

The ElectroViewer image output can either be viewed directly using the adustable eyepieceincluded or can be attached to a CCTV camera with the 7215-202 CCTV Relay Lens accessory (optional, thus effectively extending the CCTV camera's response range to beyond 1.3µm!

#### **SPECIFICATION**

| Input Photocathode          | s-1                                                     |
|-----------------------------|---------------------------------------------------------|
| Output Fluorescent Screen   | P-20 Phosphor                                           |
| Output Resolution           | 60 lp/mm                                                |
| Peak Emission<br>Wavelenght | 550nm                                                   |
| Responsivity@1.06µm         | 0.45-0.85 mA/W                                          |
| Object Distance             | 3" to ∞                                                 |
| Field of View               | 40°                                                     |
| Battery Life                | 100 hours (typical)                                     |
| Battery Type                | 9V Alkaline                                             |
| Size (L W H)                | 3½" x 3½" x 2½ " (8x8x6 cm<br>exc . ha ndle and lens es |
| Weight w/o Lens             | 1¼ lb. (5 70 gp)                                        |



Option: 7215-202 camera accesory

| ITEM                           | PART NO. | DESCRIPTION                                                                                            |
|--------------------------------|----------|--------------------------------------------------------------------------------------------------------|
| ElectroViewer 7215             | 914646   | Selected to detect 20mW/cm 2@1.3µm. Includes a 25mm objective lens, eyepiece, and 9V alkaline battery  |
| ElectroViewer 7215P            | 914646   | Selected to detect 50mW@/cm 2@1.5µm. Includes a 25mm objective lens, eyepiece, and 9V alkaline battery |
| Switch Option                  |          | Toggle ON/OFF switch replaces push button in above models                                              |
| AC Option                      |          | Viewer has additional AC adapter jack in parallel with 9V battery terminals.                           |
| CCTV Relay Lens                | 914644   | Interfaces with 1/2" CCTV cameras                                                                      |
| Extension Tube Set             | 908007   | Reduces minimum object distance to 1–2"                                                                |
| Close-up Lens Set              | 908005   | Attaches to filter thread of 25mm lens and reduces minimum object distance to about 2"                 |
| Wide Angle Objective Lens      | 908001   | 16mm F1.6 (no iris)                                                                                    |
| 2X Telephoto Objective Lens    | 908004   | 50mm F1.8                                                                                              |
| 5X Objective Lens              | 908000   | 135mm F2.8                                                                                             |
| 1/2X to 3X Zoom Objective Lens | 908006   | 12.5-75mm F1.2                                                                                         |
| Carrying/Storage Case          | 902017   | Foam-lined case for storage and transport                                                              |
| Visible Light Cut Filter       | 902031   | Mounts on 25mm Lens fi Iter thread                                                                     |
| Filter Holder                  | 909000   | Captures any 1" filter onto 25mm objective lens                                                        |
| 1"Long Pass Filters            |          | Select cut-on wavelength (nm): 700, 750, 800, 850, 900, 950, 1000, more                                |
| 1"Short Pass Filters           |          | Select cut-off wavelength (nm): 700, 750, 800, 850, 900, 950, 1000, more                               |
| 1"Band Pass Filters            |          | Select center wavelength (nm): 700, 710,, 1050, 1060, more                                             |
| 1"Band Pass Filters            |          | Select optical density: 0.1, 0.2,, 0.9, 1.0, 1.5, 2.0, 3.0, more                                       |

## CHAPTER 3 PHOTONICS PTICAL CHOPPER

- Crystal-Stabilized, Phase-Locked Feedback Loop Suppresses Low Frequency Drift and Pulse Jitter
- Manual, USB, and External Trigger Controller
- 7 blades Covering Frequencies of 1 HZ to 6kHz











MC1F2

MC1F15

MC1F30

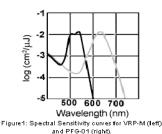


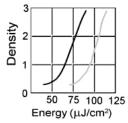




MC1F60

MC1F100


MC2F57


| Performance Specifications      |                                                                                          |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| Chopping Frequency              |                                                                                          |  |  |  |  |  |
| MC1F2 (2 slot)                  | 1 Hz – 99 Hz                                                                             |  |  |  |  |  |
| MC1F10 (10 slot, Default Blade) | 20 Hz – 1 kHz                                                                            |  |  |  |  |  |
| MC1F15 (15 slot)                | 30 Hz – 1.5 kHz                                                                          |  |  |  |  |  |
| MC1F30 (30 slot)                | 60 Hz – 3 kHz                                                                            |  |  |  |  |  |
| MC1F60 (60 slot)                | 120 Hz – 6 kHz                                                                           |  |  |  |  |  |
| MC1F100 (100 slot)              | 250 Hz – 10 kHz                                                                          |  |  |  |  |  |
| MC2F57 (2f slot)                | Outer: 14 – 700 Hz<br>Inner: 10 – 500 Hz                                                 |  |  |  |  |  |
| Chopping Range                  |                                                                                          |  |  |  |  |  |
| Harmonic                        | 2 to 15x                                                                                 |  |  |  |  |  |
| Sub-Harmonic                    | 1/2 to 1/15x                                                                             |  |  |  |  |  |
| Communications                  |                                                                                          |  |  |  |  |  |
| Communications Port             | USB                                                                                      |  |  |  |  |  |
| Protocol                        | USB (RS232 Emulated)                                                                     |  |  |  |  |  |
| Optical Head Specifications     |                                                                                          |  |  |  |  |  |
| Chopping Blade Diameter         | Ø4.0" (Ø101.6 mm)                                                                        |  |  |  |  |  |
| Chopping Blade Thickness        | 0.010" (0.254 mm)                                                                        |  |  |  |  |  |
| Mounting Base                   | 1/4"-20 (or M8) Clearance Slots<br>Spaced 3.0" (Compatible with<br>Thorlabs Breadboards) |  |  |  |  |  |
| Mounting Hole                   | 1/4"-20 with 1/4" Max Screw Depth                                                        |  |  |  |  |  |


| Blade Specifications        |                                           |
|-----------------------------|-------------------------------------------|
| Chopping Blade Slots        |                                           |
| MC1F2                       | 2                                         |
| MC1F10 (Default Blade)      | 10                                        |
| MC1F15                      | 15                                        |
| MC1F30                      | 30                                        |
| MC1F60                      | 60                                        |
| MC1F100                     | 100                                       |
| MC2F57                      | 7 Outer, 5 Inner                          |
| Slot Angle                  |                                           |
| MC1F2                       | 180°                                      |
| MC1F10 (Default Blade)      | 36°                                       |
| MC1F15                      | 24°                                       |
| MC1F30                      | 12°                                       |
| MC1F60                      | 6°                                        |
| MC1F100                     | 3.6°                                      |
| MC2F57                      | 51.4° Outer, 72° Inner                    |
| Physical Features           |                                           |
| Dimensions (W x H x D)      | 5.8" x 2.8" x 12.5"                       |
| ` ´                         | (147 mm x 71 mm x 317.5 mm)               |
| Input and Output Connectors | BNC                                       |
| Menu Control                | Twist / Push-Button Knob                  |
| Input Power Connection      | IEC Connector                             |
|                             | w/ US Style Power Cord                    |
| Weight                      | 5 lbs (9.1 lbs Shipped Weight)            |
| Operating Temperature       | 10 – 40 °C                                |
| Display Type                | 240 x 124 Pixel LCD                       |
|                             | Graphics Display                          |
| Frequency Resolution        | 1 Hz (10, 15, 30, 60, 100, and 2f blades) |
|                             | 0.01Hz (2 slot blade)                     |

## HOLOGRAM RECORDING FILM

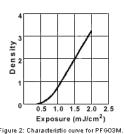
ONSET provides several types of films for hologram recording purpose. The VRP-M are standard materials. The PFG-01 is for using a CW laser and the VRP-M is for using a pulsed laser, other series for specific applications please see the following. Material life is more than two years. See the figures for spectral Sensitivity, density and diffraction efficiency characteristics.





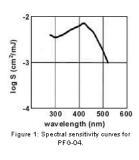


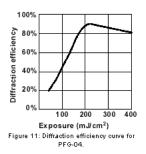
PFG-01


Figure 2: Characteristic Curves for VRP-M (left) and PFG-01 (right).

CW, reflection, PFG-03M

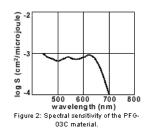
This material is designed for reflection hologram recording using CW radiation in the red spectral range (633nm - HeNe laser and 647nm - Krypton laser).

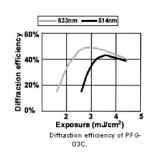

The PFG-03M material has a higher diffraction efficiency and a very high signal to noise ratio. Hologram recorded on this material have a very clear and powerful object reconstruction and excellent layer transparency.






CW, reflection Denisyak-type, PFG-04


Designed for the recording of reflection Denisyuk-type holograms using CW laser radiation (488nm, 514nm -Argon laser). Its grainless structure, makes this material have very high resolving power and a diffraction efficiency of >75%






#### CW Pull-colour reflection, PFG-03C

This production is for full-colour reflection holograms using CW laser radiation in the blue (457nm - Argon laser), green (514nm - Argon laser) and red (633nm -HeNe laser).





| Model NO.          |                  | PFG-01    | VRP-M     | PFG-03M   | PFG-03C   | PFG-04                |
|--------------------|------------------|-----------|-----------|-----------|-----------|-----------------------|
| IVIO               |                  | PFG-01    | VRP-IVI   | PFG-03M   |           |                       |
|                    | @457nm CW        |           |           |           | 2000      | 8 x 10 <sup>4</sup>   |
| Holographic        | @488nm CW        |           |           |           |           | 10 <sup>5</sup>       |
| Sensitivity        | @514.5nm CW      |           | 75        |           | 3000      | 2.5 X 10 <sup>5</sup> |
| μJ/cm <sup>2</sup> | @526.5nm, 30ns   |           |           |           |           |                       |
|                    | @633nm CW        | 100       |           | 1500-2000 | 3000      |                       |
|                    | Q-ty per box     |           |           |           |           |                       |
|                    | 30               | 63 x 63               |
| Plate Size         | 25               | 102 x 127             |
| mm x mm            | 6                | 203 x 254 |           | 180 x 240 |           | 180 x 240             |
|                    | 6                | 300 x 400             |
|                    | 4                |           | 400 x 600 |           |           |                       |
|                    | Q-ty of sheet or |           |           |           |           |                       |
|                    | Rolls per box    |           |           |           |           |                       |
| Film Size          | 5 (Sheet)        | 200 x 300 | 200 x 300 | 200 x 300 |           |                       |
|                    | 1 (Roll)         | 36 x 20   | 36 x 20   | 36 x 20   |           |                       |
| mm x mm            | 1 (Roll)         | 102 x 20  | 102 x 20  | 102 x 20  |           |                       |
| (Sheet)            | 1 (Roll)         | 203 x 20  | 203 x 20  | 203 x 20  |           |                       |
| mm x m             | 1 (Roll)         | 304 x 10  | 304 x 10  | 304 x 10  |           |                       |
| (Roll)             | 1 (Roll)         | 350 x 10  | 350 x 10  |           |           |                       |
|                    | 1 (Roll)         | 610 x 10  | 610 x 10  |           |           |                       |
|                    | 1 (Roll)         | 1200 x 10 | 1200 x 10 |           |           |                       |

# SPATIAL LIGHT MODULATOR(SLM)



The Need for Switchable Optical Devices

Switchable optical devices give new opportunities:

- the optical function can be modified without need to change optical components.
- the optical function can be programmed.
- high switching speeds provide for real-time applications.
- laser light can be spatially modulated either in amplitude or phase.

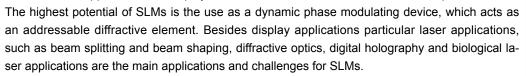
#### **ApplicationS** Illumination **Machine Vision** Projection **Quality Control Image** Pattern **Technical Optics** Holography **Optical Media 3D Printing** Hologram DOE, Grating SLM Lens, Prism Filter **Machine Vision Technical Optics Patter Recognition** Bit Pattern Phase plate **Optical Information Technical Optics** processing

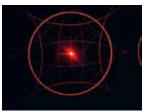


### CHAPTER 3 PHOTONICS **RANSLUCENT SVGA SLM**



#### **Spatial Light Modulators**


The Spatial Light Modulator (SLM) systems are based on liquid crystal microdisplays. These devices can modulate light spatially in amplitude and phase, so they act as a dynamic optical element. The optical function or information to be displayed can be taken directly from the optic design or an image source and can be transferred by a computer interface.


Implementation is very easy due to the smart system architecture and by an easy ad-


dressing using VGA or DVI signals directly from a computer graphics card.

#### LC 2002

The LC 2002 is an easy-to-use spatial light modulator system based on an translucent LC microdisplay designed for prototyping in industrial development and research. It can be used to modulate light spatially, where the modulation function can be electrically addressed by a computer using a MS Windows software. Also strong laser pulses can be shaped by applied phase functions. The LC 2002 supports several display formats with a max. resolution of 832 x 624 pixels.









#### **APPLICATIONS**

- Display Applications
- Image Projection
- Beam Splitting
- · Laser Pulse Modulation
- Laser Beam Shaping
- Phase Shifting
- Digital Holography
- Coherent Wavefront Modulation
- Optical Tweezers
- · Pattern Recognition

#### **Main Features:**

Liquid Crystal Microdisplay (Transmission) SVGA Resolution (800 x 600 Pixels) 60 Hz Image Frame Rate Full Developers Kit (easy to run using a standard PC) Microsoft Windows Driver Software Application Software

#### **Display Features:**

Pixels: 800 x 600 Pixel Pitch: 32 µm Fill Factor: 85%

Panel Size: 21 x 26 mm


Addressing: 8 Bit (256 Pixel Values) Signal Format: VGA, SVGA

#### **Special Optical Features:**

Amplitude or Phase Modulation 2 π Phase Shift @ 532 nm Intensity Ratio of 1000:1 @ 633 nm Coherent Light Source

#### **Software Features:**

Driver: Brightness / Contrast / Geometry / Gamma Control Application: Basic DOE computations; Generation of optical functions(Circular Aperture, Fresnel Zone Lens, Axicon, Single and Double Slit ...); Gratings (incl. Blazed and Sinusoidal)

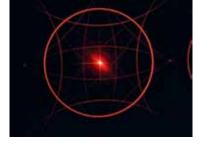


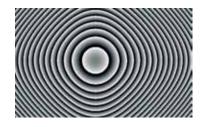
## CHAPTER 3 PHOTONICS ALL-ROUND XGA SLM



#### **Spatial Light Modulators**

The Spatial Light Modulator (SLM) systems are based on liquid crystal microdisplays. These devices can modulate light spatially in amplitude and phase, so they act as a dynamic optical element. The optical function or information to be displayed can be taken directly from the optic design or an image source and can be transferred by a computer interface. Implementation is very easy due to the smart system architecture and by an easy addressing using VGA or


DVI signals directly from a computer graphics card.


#### LC-R 2500

The LC-R 2500 is an easy-to-use spatial light modulator system based on a reflective LCoS microdisplay designed for prototyping in industrial development and research. It can be used to modulate light spatially in amplitude and phase, where the modulation function can be electrically addressed by a computer using a MS Windows software. The LC-R 2500 supports DVI-signals with a resolution of 1024 x 768 pixels. High efficiency due to the reflective LCoS display and phase mostly modulation guarantee excellent optical performance.

The highest potential of SLMs is the use as a dynamic phase modulating device, which acts as an addressable diffractive element.

Besides display applications particular laser applications, such as diffractive optics, Biophotonics and medical laser applications to material processing, where strong laser pulses can be shaped by applied phase modulation are the main applications and challenges for this SLMs.





#### **APPLICATIONS**

- Display Applications
- Laser Pulse Modulation
- Digital Holography
- Beam Splitting
- Phase Shifting
- Laser Beam Shaping
- Optical Tweezers
- · Coherent Wavefront Modulation

#### **Main Features:**

LCoS Microdisplay (Reflective) XGA Resolution (1024 x 768 Pixels) 72 Hz Image Frame Rate Full Developers Kit (easy to run using a standard PC) Microsoft Windows Driver Software Application Software

#### **Display Features:**

Pixels: 1024 x 768 Pixel Pitch: 19 µm Fill Factor: 93%

Panel Size: 19,6 x 14,6 mm

Addressing: 8 Bit

Signal Format: DVI - XGA Resolution

#### **Special Optical Features:**

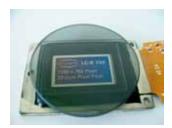
Amplitude or Phase Modulation  $2 \pi$  Phase Shift between 400 and 700 nm Intensity Ratio of 1000:1 @ 532 nm Coherent Light Source

#### **Software Features:**

Driver: Brightness / Contrast / Geometry / Gamma Control Application: Basic DOE computations; Generation of optical functions (Circular Aperture, Fresnel Zone Lens, Axicon, Single and Double Slit ...); Gratings (incl. Blazed and Sinusoidal)

## HIGH SPEED WXGA SLM




#### **Spatial Light Modulators**

The Spatial Light Modulator (SLM) systems are based on liquid crystal microdisplays. These devices can modulate light spatially in amplitude and phase, so they act as a dynamic optical element. The optical function or information to be displayed can be taken directly from the optic design or an image source and can be transferred by a computer interface. Implementation is very easy due to the smart system architecture and by addressing VGA or DVI signals directly from a computer graphics card.

#### LC-R 720

The LC-R 720 is an easy-to-use Spatial Light Modulator system based on a reflective LCOS microdisplay designed for prototyping in industrial development and research. It can be used to modulate light spatially in amplitude and phase, where the electro

optical modulation function can be modified by a computer using a MS Windows software. The LC-R 720 supports DVI-signals with a resolution of 1280 x 768 pixels. High light efficiency due to the reflective LCOS display and phase only modulation guarantee excellent optical performance. Due to the high image frame rate of 180 HZ and the short response time of 3 ms the higest potential of the LC-R 720 is the use at high speed applications. Besides imaging and projection applications particular laser applications, such as diffractive optics, Bio-photonics and medical laser applications to material processing, where strong laser pulses can be shaped by applied phase modulation are the main applications and challenges for this SLMs.





#### **APPLICATIONS**

- Display Applications
- Fringe Projection
- Digital Holography
- Imaging & Projection
- Laser Beam Shaping
- Laser Pulse Modulation
- Beam Splitting
- Optical Tweezers

#### Main Features:

LCoS Microdisplay (Reflective) WXGA Resolution (1280 x 768 Pixels) Up to 180 Hz Image Frame Rate Full Developers Kit (easy to run using a standard PC) Microsoft Windows Driver Software **Application Software** 

#### **Display Features:**

Pixels: 1280 x 768 Pixel Pitch: 20 µm Fill Factor: 92%

Response Time: < 3 ms Addressing: 8 Bit

Signal Format: DVI - WXGA Resolution

Trigger Sync

#### **Special Optical Features:**

Amplitude or Phase Modulation Above 1  $\pi$  Phase Shift in the Visible Intensity Ratio of 1000:1 @ Typical Phase Only Modulation Mode High Light Efficiency (Diffraction Efficiency up to 60 %)

#### **Software Features:**

Driver: Brightness / Contrast / Geometry / Gamma Control Application: Basic DOE computations; Generation of optical functions (Circular Aperture, Fresnel Zone Lens, Axicon, Single and Double Slit ...); Gratings (incl. Blazed and Sinusoidal)

# HIGH RESOLUTION & HIGH CONTRST WUXGA SLM



#### LC-R 1080

The LC-R 1080 is an easy-to-use Spatial Light Modulator system based on a reflective LCoS™ microdisplay designed for prototyping in industrial development and research. It can be used to modulate light spatially in amplitude and phase, where the electro optical modulation function can be modified by a computer using a MS Windows software. The LC-R 1080 supports DVI-signals with a WUXGA/ HDTV resolution of 1920 x 1200 pixel. High light efficiency due to the reflective LCoS display and the Brillian high contrast mode guarantee excellent optical performance.

Due to the high resolution (1920 x 1200 - HDTV-resolution) and the small pixel pitch of 8.1 µm the LC-R 1080 is an allround spatial light modulator. Besides display applications particular laser applications, such as diffractive optics, Bio-photonics and

medical laser applications to material processing, where strong laser pulses can be shaped by applied phase modulation are the main applications and challenges for this SLMs.







#### **APPLICATIONS**

- Display Applications
- Laser Beam Shaping
- Digital Holography
- Imaging & Projection
- Coherent Wavefront Modulation
- Laser Pulse Modulation
- Beam Splitting
- Optical Tweezers

#### **Main Features:**

LCoS Microdisplay (Reflective) WUXGA Resolution (1920 x 1200 Pixel) 60 Hz Image Frame Rate Full Developers Kit (easy to run using a standard PC) Microsoft Windows Driver Software **Application Software** 

#### **Display Features:**

Pixels: 1920 x 1200 Pixel Pitch: 8.1 µm Fill Factor: 90%

Diagonal Image Array Size: 18.34 mm (WUXGA)

Addressing: 8 Bit

Signal Format: DVI - WUXGA Resolution

#### **Special Optical Features:**

Amplitude or Phase Modulation Above 1.2 π Phase Shift in the Visible Intensity Ratio of 2000:1 (@ 633 nm Coherent Light Source) **High Contrast** 

#### **Software Features:**

Driver: Brightness / Contrast / Geometry / Gamma Control Application: Basic DOE computations; Generation of optical functions (Circular Aperture, Fresnel Zone Lens, Axicon, Single and Double Slit ...); Gratings (incl. Blazed and Sinusoidal)

### CHAPTER 3 PHOTONICS PHASE ONLY SPATIAL LIGHT **MODULATORS**



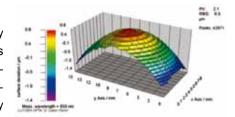
#### **APPLICATIONS**

- Phase Shift Applications
- Optical Networking Applications
- Optical Tweezers
- Lithography
- Wave Front Correction

- Holographic Applications
- Holographic Security Sytems
- · Optical Metrology Interferometry
- Pulse Shaping
- Interferometry

#### **Phase Modulating LCOS Microdisplays**

HOLOEYE developed high resolution, pure phase modulating microdisplays with very small pixels and high light efficiency. Applications range from holographic


applications (holographic projection), litography, optical metrology, interferomenty, optical networking applications, holographic security systems, wavefront correction to optical tweezing, trapping and micro manipulation applications.

#### **PLUTO - Phase Only Spatial Light Modulator Series**

The PLUTO phase modulator models are based on reflective LCOS microdisplays with 1920 x 1080 pixel resolution. The PLUTO devices are packaged in a very small housing to ensure an easy integration into optical setups and applications. The PLUTO phase modulator series now includes 4 versions, optimized for the visible, a version optimized for a broad wavelength band centered at 850 nm, optimized for the near infrared around 1064 nm and a version optimized for typical telecommunication wavelengths around 1550 nm.

#### **Phase Modulating LCOS Microdisplays**

HOLOEYE developed high resolution, pure phase modulating microdisplays with very small pixels and high light efficiency. Applications range from holographic applications (holographic projection), litography, optical metrology, interferomenty, optical networking applications, holographic security systems, wavefront correction to optical tweezing, trapping and micro manipulation applications. PLUTO - High Efficiency and Easy Addressing The displays show a reflectivity of approx. 60% and diffraction



efficiencies of more than 80%. Thereby a total light efficiency of more than 50% per addressable diffractive device is possible. The driving of the PLUTO devices is as easy as with all HOLOEYE Spatial Light Modulators. A HDTV graphics card is sending HDTV resolution images to the device (via DVI) with a frame rate of 60 Hz. The Pluto modulators are easily addressed as an external monitor.

#### **PLUTO - Optimized for Different Wavelengths Bands**

HOLOEYE provides 4 versions of the PLUTO modulator:

- PLUTO-VIS: This version is optimized for the visible because of a broadband AR (anti reflection) coating for this spectral range.
- PLUTO-NIR: This version is optimized for the near infrared around 1064 nm because of an AR coating for 1064 nm and a thicker LC layer.
- PLUTO-NIR-2: This version is usable for a broad wavelength band around 850 nm and in the lower visible.
- PLUTO-TELCO: This version is optimized for common telecommunication wavelenghts ranges around 1550 nm.

| Display Type    | Resolution        | Pixel Pitch | Fill Factor | Adressing | Frame Rate | Signal Format   |
|-----------------|-------------------|-------------|-------------|-----------|------------|-----------------|
| Reflective LCoS | 1920 x 1080 Pixel | 8.0 µm      | 87 %        | 8 Bit     | 60 Hz      | DVI - HDTV Res. |

## CHAPTER 3 PHOTONICS AUTOMATIC DARKEING EYEWEAR

### Protect your eyes from IPL.

Automatic darkening filters for personal eye protection from IPL (Intense Pulse Light.)

- Hight Tec filter shuts automatically after sensing the IPL for the purpose of protecting your eyes.
- You will have clear vision and you will be able to see your patients' skin condition during the IPL treatment.
- Sersitive sensor achieves shutter speed of about 0.0002 sec.(Shutter speed of the human eye is about 0.25 sec.)
- Built-in solar battery backs up the battery.



Protection not only for visible light but also UV & IR.

Adjustable fitting angle and temple length

| SPECITICATION               |                       |
|-----------------------------|-----------------------|
| Weight                      | 95 g                  |
| Shutter speed               | 0.0002 sec.           |
| shade number                | Close:#11             |
| visible light transmittance | Close:0.005% Open:16% |
| Standard                    | EN379 CE              |





Soft rubber prevents scattered light from entering the goggle through all possible angles.



Shutter open: Clear view through open filter.



Shutter closed: Perfect protection from IPL light exposure.




#### **CE approved For FLASH LAMP**

This product is developed to protect your eyes from strong light such as Flash Lamp Light.



#### **Specification**

The upper, lower and side shield covers, prevent light from entering through any angle. The angle of the front frame and length of the temples can be adjusted.







The angle of the frame can be adjusted to conform to the contour of the wearer's face



The length of temple can be adjusted to conform to the wearer's face

#### The application of this over glass provides following product features:

- All parts are made of plastic.
   Light weight
   Antistatic
- Features of PETROID Lens filter: Super high impact-resistance Anti-scratch

- 3) Overglass provides a wide view.
  Wearing over prescriptioin eyewear
- Comfortable wearing:
   Soft forehead pad
   Soft non-slip temples

CE approved: YL 1 S CE

usable for IPL:OD>5 between 590 and 700nm; OD>3 between 760 and 950nm; OD>2 between 555 and 975nm

Shutters

## CHAPTER 3 PHOTONICS LASER SAFETY EYEWEAR

#### **Protect your eyes from Lasers**



**CE Products** 







Lens and frame are unified by a molding process.



### YL-130 (Laser absorption type)

Snug fitting elastomer frame devel-

oped from ergonomics.

| FILTER CODE                 | COLOR/LUMINOUS<br>TRANSMITTANCE | APPLICABLE<br>LASER      | WAVELENGTH<br>(nm) | OPTICAL<br>DENSITY<br>(OD)    | REMARKS                                                                                                                                                                                                                                                                         |
|-----------------------------|---------------------------------|--------------------------|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YL-130 Nd-YAG<br>(SHG)      | RED/16%                         | Nd-YAG (SHG)             | 532                | 10                            | D180-315 L7/R180-315 L53<br>DIR>315-532 L5<br>YL S CE                                                                                                                                                                                                                           |
|                             |                                 | ALEXANDRITE              | 755                | 6                             | D100.24517/D100.21512                                                                                                                                                                                                                                                           |
| YL-130 ALEXANDRITE PINK/30% | DINIC CORP.                     | LASER DIODE              | 750~800            | 4~10                          | DIR>315-360 L5                                                                                                                                                                                                                                                                  |
|                             | PINN/30%                        |                          | 800850             | 10~4                          | DI780-860 L4 DI>860-870 L3                                                                                                                                                                                                                                                      |
|                             |                                 | TI-SAPPHIRE              | 750~850            | 4                             | D180-315 L7/R180-315 L53 DIR>315-532 L5 VL S CE D180-315 L7/R180-315 L3 DIR>315-360 L5 DI780-860 L4 DI>860-870 L3 VL S CE DIR870-925 L4 DIR>925-1065 L5 DIRS70-925 L4 DIR>925-1065 L5 DIRS70-925 L4 DIR>925-1065 L5 DIRS70-925 L4 DIR>925-1065 L5 DIRS70-925 L4 DIR>925-1065 L5 |
| YL-130                      | VL-130 Nd-YAG 10                | 1064                     |                    | DIR870-925 L4 DIR>925-1065 L5 |                                                                                                                                                                                                                                                                                 |
| Nd-YAG GREEN/50%            | GHEEN/00%                       | Nd-YLF                   | 1053               | 6 DIR>1065-1090<br>YL S CE    |                                                                                                                                                                                                                                                                                 |
|                             |                                 | The second second second |                    |                               |                                                                                                                                                                                                                                                                                 |

#### YL-130C (Application for Multi band lasers)

| AND PARTY. |           | Nd-YAG (FHG) | 266  | 10 | D180-315 L7/R180-315 L3 DIR>315-360 L5                   |
|------------|-----------|--------------|------|----|----------------------------------------------------------|
| YL-130C    | AMPED/ADV | Nd-YAG (THG) | 355  | 10 | D-360-532 L5/IR-360-532 L6<br>DI800-830 L3 DI-830-925 L4 |
| Nd-YAG2    | AMBER/40% | Nd-YAG (SHG) | 532  | 4  | DIR-925-1065 L5 DIR-1065-1090 L3                         |
|            |           | Nd-YAG       | 1064 | 6  | YLSCE                                                    |

#### YL-130M (Type Attenuation to 1/100 for "alignment work")

| YL-130M<br>Nd-YAG (SHG) | RED/30%  | Nd-YAG (SHG)        | 532     | 2 | D180-315 L7/R180-315 L3<br>DIR>315-360 L5 500-532 R2<br>YL S CE                                        |
|-------------------------|----------|---------------------|---------|---|--------------------------------------------------------------------------------------------------------|
| YL-130M<br>VLD          | BLUE/55% | VISIBLE LASER DIODE | 660~680 | 2 | D180-315 L7/R180-315 L3 DIR>315-380 L5<br>625-640 R1 >640-655 R2<br>>655-665 R1 >665-680 R2<br>YL S CE |

#### **Protect your eyes from Lasers**





The frame angle can be changed according to the face of the user.



The length of temples can be changed according to the head shape of the user.

#### YL-717 (Laser absorption type)

| FILTER CODE            | COLOR/LUMINOUS<br>TRANSMITTANCE | APPLICABLE<br>LASER | WAVELENGTH<br>(nm) | OPTICAL<br>DENSITY<br>(OD) | REMARKS                                                                         |  |  |  |  |  |
|------------------------|---------------------------------|---------------------|--------------------|----------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| YL-717<br>EX           | CLEAR/85%                       | EXCIMER             | 193<br>248<br>308  | 10                         | D180-315 L7/R180-315 L3<br>DIR>315-360 L5 DI9000-11000 L3<br>YL S CE            |  |  |  |  |  |
| YL-717<br>Nd-YAG (SHG) | RED/16%                         | Nd-YAG (SHG)        | 532                | 10                         | D180-315 L7/R180-315 L3 DIR>315-360 L5<br>D>360-532 L5 IR>360-532 L6<br>YL S CE |  |  |  |  |  |
| YL-717<br>HeNe         | BLUE/25%                        | He-Ne               | 632.8              | 5                          | D180-315 L7/R180-315 L3<br>DIR>315-360 L5 DIR620-694 L4<br>YL S CE              |  |  |  |  |  |
|                        |                                 | ALEXANDRITE         | 755                | 6                          | D180-315 L7/R180-315 L3                                                         |  |  |  |  |  |
| YL-717                 | DINIV/2004                      | LACED DIODE         | 750~800            | 4~10                       | DIR>315-360 L5                                                                  |  |  |  |  |  |
| ALEXANDRITE            | PINK/30%                        | LASER DIODE         | 800~850            | 10~4                       | DI780-860 L4                                                                    |  |  |  |  |  |
|                        |                                 | TI-SAPPHIRE         | 750~850            | 4                          | YL S CE                                                                         |  |  |  |  |  |
| YL-717<br>Nd-YAG       | GREEN/50%                       | Nd-YAG              | 1064               | 6                          | DIR870-925 L4 DIR>925-1065 L5<br>DIR>1065-1090 L3 DI9000-11000 L3<br>YL S CE    |  |  |  |  |  |

#### YL-717C (Application for Multi band lasers)

| - · · · · · · · · · · · · · · · · · · · |           |                     |          |     |                                                                 |  |  |
|-----------------------------------------|-----------|---------------------|----------|-----|-----------------------------------------------------------------|--|--|
|                                         |           | VISIBLE LASER DIODE | 660~680  | 2~3 |                                                                 |  |  |
| YL-717C<br>LD                           |           | LASER DIODE -       | 740      | 4   | D180-315 L7/R180-315 L3 DIR>315-360 L5                          |  |  |
|                                         | GREEN/ 7% |                     | 820      | 4   | DIR665-690 L3 DIR>690-730 L4<br>DIR>730-1065L5 DIR>1065-1090 L3 |  |  |
|                                         |           | TI-SAPPHIRE         | 680~1100 | 3~5 | YL S CE                                                         |  |  |
|                                         |           | Nd-YAG              | 1064     | 5   |                                                                 |  |  |
|                                         |           | Nd-YAG (FHG)        | 266      | 10  | D180-315 L7/R180-315 L3 DIR>315-360 L5                          |  |  |
| YL-717C                                 | AMBER/40% | Nd-YAG (THG)        | 355      | 10  | D>360-532 L5/IR>360-532 L6<br>DI800-830 L3 DI>830-925 L4        |  |  |
| Nd-YAG2                                 | AMBEN/40% | Nd-YAG (SHG)        | 532      | 4   | DIR>925-1065 L5 DIR>1065-1090 L3                                |  |  |
|                                         |           | Nd-YAG              | 1064     | 6   | YL S CE                                                         |  |  |

#### YL-717M (Type Attenuation to 1/100 for "alignment work")

| · · · · · · · · · · · · · · · · · · |          |                     |         |   |                                                                                                        |  |  |  |
|-------------------------------------|----------|---------------------|---------|---|--------------------------------------------------------------------------------------------------------|--|--|--|
| YL-717M<br>Nd-YAG (SHG)             | RED/30%  | Nd-YAG (SHG)        | 532     | 2 | D180-315 L7/R180-315 L3<br>DIR>315-360 L5 500-532 R2<br>YL S CE                                        |  |  |  |
| YL-717M<br>VLD                      | BLUE/55% | VISIBLE LASER DIODE | 660~680 | 2 | D180-315 L7/R180-315 L3 D1R>315-360 L5<br>625-640 R1 >640-655 R2<br>>655-665 R1 >665-680 R2<br>YL S CE |  |  |  |

#### **Protect your eyes from Lasers**





### YL-290 (Laser absorption type)

| FILTER CODE            | COLOR/LUMINOUS<br>TRANSMITTANCE | APPLICABLE<br>LASER | WAVELENGTH<br>(nm) | OPTICAL<br>DENSITY<br>(OD) | REMARKS                                                                         |  |  |  |  |
|------------------------|---------------------------------|---------------------|--------------------|----------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|                        |                                 |                     | 193                |                            |                                                                                 |  |  |  |  |
|                        |                                 | EXCIMER             | 248                |                            |                                                                                 |  |  |  |  |
| YL-290                 |                                 |                     | 308                |                            | D180-315 L7/R180-315 L3                                                         |  |  |  |  |
| EX He-Cd               | YELLOW/80%                      | He-Cd               | 325                | 10                         | DIR>315-460 L5                                                                  |  |  |  |  |
|                        |                                 | He-ou               | 441.7              |                            | YL S CE                                                                         |  |  |  |  |
|                        |                                 | Nd-YAG (THG)        | 355                |                            |                                                                                 |  |  |  |  |
|                        |                                 | Nd-YAG (FHG)        | 266                |                            |                                                                                 |  |  |  |  |
| YL-290<br>Nd-YAG (SHG) | RED/16%                         | Nd-YAG (SHG)        | 532                | 10                         | D180-315 L7/R180-315 L3 DIR>315-360 L5<br>D>360-532 L5 IR>360-532 L6<br>YL S CE |  |  |  |  |
|                        |                                 | ALEXANDRITE         | 755                | 6                          | D180-315 L7/R180-315 L3                                                         |  |  |  |  |
| YL-290                 | PINK/30%                        | LASER DIODE         | 750~800            | 4~10                       | DIR>315-360 L5                                                                  |  |  |  |  |
| ALEXANDRITE            | PINN/30%                        | LASER DIODE         | 800~850            | 10~4                       | DI740-860 L4                                                                    |  |  |  |  |
|                        |                                 | TI-SAPPHIRE         | 750~850            | 4                          | YL S CE                                                                         |  |  |  |  |
| YL-290<br>Nd-YAG       | GREEN/50%                       | Nd-YAG              | 1064               | 6                          | DIR870-925 L4 DIR>925-1065 L5<br>DIR>1065-1090 L3 DI9000-11000 L3<br>YL S CE    |  |  |  |  |

### YL-290C (Application for Multi band lasers)

|   |         |             | Nd-YAG (FHG) | 266  | 10 | D180-315 L7/R180-315 L3 DIR>315-360 L5                   |
|---|---------|-------------|--------------|------|----|----------------------------------------------------------|
|   | YL-290C | AMBER/40%   | Nd-YAG (THG) | 355  | 10 | D>360-532 L5/IR>360-532 L6<br>DI800-830 L3 DI>830-925 L4 |
|   | Nd-YAG2 | AIVIDEN/40% | Nd-YAG (SHG) | 532  | 4  | DIR>925-1065 L5 DIR>1065-1090 L3                         |
| L |         |             | Nd-YAG       | 1064 | 6  | YL S CE                                                  |

### YL-290M (Type Attenuation to 1/100 for "alignment work")

| YL-290M<br>Nd-YAG (SHG) | RED/30%  | Nd-YAG (SHG)        | 532     | 2 | D180-315 L7/R180-315 L3<br>DIR>315-360 L5 500-532 R2<br>YL S CE                                        |
|-------------------------|----------|---------------------|---------|---|--------------------------------------------------------------------------------------------------------|
| YL-290M<br>VLD          | BLUE/55% | VISIBLE LASER DIODE | 660~680 | 2 | D180-315 L7/R180-315 L3 DIR>315-360 L5<br>625-640 R1 >640-655 R2<br>>655-670 R1 >670-680 R2<br>YL S CE |

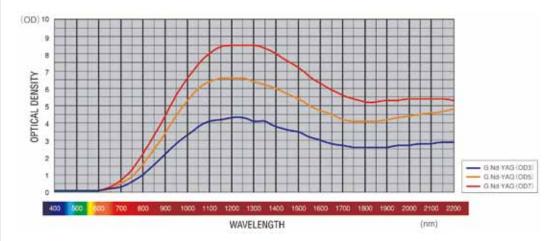
#### **Protect your eyes from Lasers**

- · High visible transmittance
- High color transmission
- High chemical agent resistance
- Three different OD filters of NdYAG are available according to the laser power



- Frame / Plastic
- Lens / Tempered glass
- Specification / Can be worn over prescription eyewear




#### **Tempered Glass**

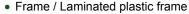
It is important to see your environment while working with lasers. In order to increase the visibility and color transmission, this type is made to have a high visible light transmittance. Please choose the filter according to the laser power.

### Tempered Glass (Laser absorption type) Values, they are not based on standard values.

Please note that the following optical density graphs are based on measurement

| FILTER CODE    | YL250G | COLOR/LUMINOUS<br>TRANSMITTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPLICABLE<br>LASER | WAVELENGTH<br>(nm) | DPTICAL<br>DENSITY<br>(OD) | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nd-YAG              | 1064               | 3<                         | These tempered glasses are applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ho-YAG              | 2100               | 2<                         | for Nd-YAG 1064nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Er-YAG              | 2940               | 2<                         | Available for OD3, OD5 and OD7 types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Nd-YAG (DD3)   | 0      | GREEN/80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TELECOM             | 980                | 3<                         | THE RESERVE TO SERVE THE PARTY OF THE PARTY |  |
| ANTONIO STANSA |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1310               | 2<                         | Applicable for the Telecommunication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1550               | 2<                         | Laser Diode 1310nm and 1550nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LASER DIODE         | 780                | 0.8<                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                |        | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd-YAG              | 1064               | 5<                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Nd-YAG (OD5)   | 0      | GREEN/74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ho-YAG              | 2100               | 3.5<                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Nd-YAG (OD7)   |        | The state of the s | Er-YAG              | 2940               | 3.5c                       | These tempered glasses are applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                |        | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd-YAG              | 1064               | 7c                         | for Nd-YAG 1064nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | 0      | GREEN/69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ho-YAG              | 2100               | 5<                         | Available for OD3, OD5 and OD7 types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Er-YAG              | 2940               | 5<                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |




#### Precautions when using the Tempered Glass Laser protective eyewear

- 1.Do not use this laser protective eyewear for any other laser other than the applicable laser.
- 2.Do not take off this laser protective eyewear while working with a laser.
- 3.Do not use this laser protective eyewear for welding protection.
- 4.Do not look directly into the laser beam even when wearing this laser protective eyewear.
- 5.Do not use this product if it was exposed to a laser with a high power density or if it is damaged.

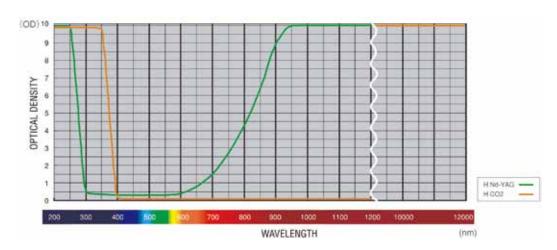
#### **Protect your eyes from Lasers**

- Laser Safeguard provides protection from a direct laser beam for three seconds. (Conditional
- · High optical density
- High threshold against applicable laser (Both frame and filter)
- · Laminated glass provides high impact resistance





- · Lens / Laminated glass filter
- Specification / Can be worn over


## prescription eyewear

#### High-powered laser goggle

This product is developed to protect the user and gives him ample time to take evasive action in the case that, during routine work, the protection ic hit from not only a scattered laser beam but also from a direct laser beam.

#### Please note that the following optical density graphs are based on HIGH - POWERED LASER (Laser absorption type) measurement values, they are not based on standard values.

|                                         |         |                                 |                    |              |                    | and the second s |                                                                                                                                                     |
|-----------------------------------------|---------|---------------------------------|--------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| FILTER CODE                             | YL120H  | COLOR/LUMINOUS<br>TRANSMITTANCE | 1000               | CABLE<br>SER | WAVELENGTH<br>(nm) | OPTICAL<br>DENSITY<br>(OD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REMARKS                                                                                                                                             |
|                                         |         |                                 | Meli               | VAC          | 1064               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Managed and the second and a second and the second                                                                                                  |
|                                         | CE      | GREEN/67%                       | Nd-YAG             |              | 1319.5             | 7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No penetration by a laser of power density<br>10^8W/m^2 at 1064nm within three seconds<br>This filter provides over OD7 between 1000<br>and 1500nm. |
| Nd-YAG                                  |         |                                 | Nd-GLASS<br>Nd-YLF |              | 1060               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| 100000000000000000000000000000000000000 |         |                                 |                    |              | 1047               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
|                                         |         |                                 | 1005               | TLE :        | 1053               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and rodolen.                                                                                                                                        |
|                                         | ○<br>(€ |                                 | C                  | Oz.          | 10600              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No penetration by a laser of power density                                                                                                          |
| CO2                                     |         | CLAR / 86%                      | EXCIMER            | ArF          | 193                | 10c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10"8W/m"2 at 1600nm within three seconds                                                                                                            |
|                                         |         |                                 |                    | KrF          | 248                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This filter provides over CD10 between 190                                                                                                          |
|                                         |         |                                 |                    | XeC          | 308                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and 320nm.                                                                                                                                          |



#### Precautions when using the High - Powered Laser Safeguard

- 1.Do not use this laser protective eyewear for any other laser other than the applicable laser.
- 2.Do not take off this laser protective eyewear while working with a laser.
- 3.Do not use laser protective eyewear for welding protection.
- 4.The frame and filter of the Laser Safeguard are designed not to be penetrated by a direct laser beam within three seconds, in order to give the user enough time to take evasive action

## LASER MACHINING SAFETY EYEWEAR YL-500

#### **Protect your eyes from Lasers**



- 40cm × 40cm (thickness 3mm)
- Only for CO2, thickness is 4mm
- Only for Nd-Yag, maximum size is 120cm × 100cm (thickness 3.5mm)
- Material: Polymetyl Meta Acrylate
- Sales Unit: Any size within the above mentioned sizes

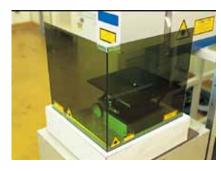
#### **Outline of Product**

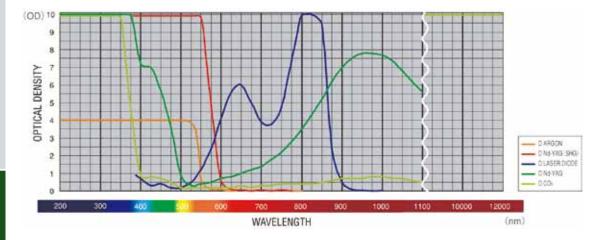
• Due to the acrylic material, accurate measurement processing is available. (We perform any customized measurement processing including perforation processing.)

This product is used as a measure to protect operators from laser risks, as it is essential to avoid exposure from laser radiation due to laser emitting equipment. Laser processing machines are most likely to cause a risk due to umforeseen laser reflections. The Laser Shield Window can be used for a variety of applications such as a viewing window, a partition of a control area or an aperture installation on doors.



#### Installation method of the Laser Shield Window:


Because any perforation and measurement processing is applicable, you can install this product easily to any ready-made equipment.




Laser absorption type


Please note that the following optical density graphs are based on measurement values; they are not based on standard values.

| CODE NAME    | COLOR / LUMINOUS<br>TRANSMITTANCE | APPLICABLE<br>LASER       | WAVELENGTH<br>(nm) | MIN.OPTICAL<br>DENSITY<br>(00) | MAXIMUM<br>SIZE<br>(mm) | THICKNESS<br>(mm) |
|--------------|-----------------------------------|---------------------------|--------------------|--------------------------------|-------------------------|-------------------|
| ARGON        | ORANGE/60%                        | EXCIMER<br>ARGON<br>He-Cd | 200~514.5          | 4c                             | 400×400                 | 3.0               |
| Nd-YAG (SHG) | RED/15% 🔴                         | ARGON<br>Nd-YAG (SHG)     | 480~540            | 6c                             | 400×400                 | 3.0               |
| LASER DIODE  | BLUE/7%                           | LASER DIODE<br>He-Ne      | 632.8,760~850      | 5<                             | 400×400                 | 3.0               |
| Nd-YAG       | GREEN/25%                         | Nd-YAG                    | 1064               | 5c                             | 1200×1000               | 3.5               |
| COz          | GREEN/60%                         | COz                       | 10600              | 10<                            | 400×400                 | 4.0               |





#### **YL-600**



- Size: Effective width 33cm (thickness 0.7mm)
- Material: plasticized polyvinyl chloried
- Sales unit: Length 50cm, Maximum length 10m per roll Size: Effective width 33cm, Thickness 0.7mm Unit: 50cm. maximum length available 10 meters

#### **Outline of the Product:**

- As this product is made of plasticized polyvinyl chloride, you can easily cut the curtain by scissors and fit it to the size of any readymade facilities.
- Long length product is available and you can use it for a large area

It is essential to contain a laser within an enclosed area from a safety point of view. When you isolate the work area from the outside, the outside operators can not identify the condition of the operators within such an enclosed area and this is not advisable form a safety perspective. The Laser Curtain not only provides isolation of the laser control area but it also offers peace of mind and safety to all workers which will constitute a safe working environment.

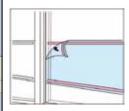


#### Installation method of the Laser Shield Curtain:

The Laser Shield Curtain is made of plasticized polyvinyl chloride. Therefore, it

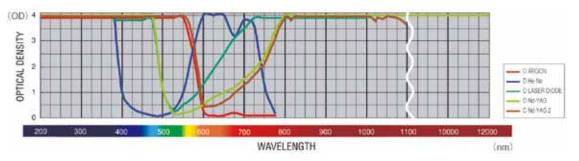
is soft and flexible making its installation much easier as it can be made into any shape according to its required applications. However, in order to maximize its effectiveness, your attention is drawn to the following information.




### Laser absorption type shield curtain YL-600

| CODE NAME | COLOR / LUMINOUS<br>TRANSMITTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APPLICABLE<br>LASER | WAVELENGTH<br>(nm) | MIN.OPTICAL<br>DENSITY<br>(OD) |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|--------------------------------|--|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EXCIMER             | 190~380            |                                |  |
|           | and the same of th | ARGON               | 488                |                                |  |
| ARGON     | RED/20% 🔴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Andon               | 514.5              | 3<                             |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | He-Cd               | 441.6              |                                |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nd-YAG (SHG)        | 532                |                                |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | He-Ne               | 632.B              |                                |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Dye)               | 570~630            |                                |  |
| He-Ne     | Di HEHROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GOLD VAPOR          | 627.8              | 2<                             |  |
| He-re-    | BLUE/12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KRYPTON             | 647.1              | 25                             |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEXT PARE           | 676.4              |                                |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ruby                | 694.3              |                                |  |
|           | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LASER DIODE         | 740~910            | 9.                             |  |
| Nd-YAG    | GREEN/12% (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /12% ALEXANDRITE    |                    | 3<                             |  |
|           | NAME OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ti-SAPPHIRE         | 700~1000           | 1~3                            |  |
|           | COTTON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nd-YAG              | 1064               |                                |  |
|           | GREEW3076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EN/30% CO2          |                    | 3<                             |  |

Please note that the following optical density graphs are based on measurement values, they are not based on standard values


### Application for Multi band laser YL-600C

| CODE NAME | COLOR / LUMINOUS<br>TRANSMITTANCE | APPLICABLE<br>LASER | WAVELENGTH<br>(nm) | MIN.OPTICAL<br>DENSITY<br>(OD) |
|-----------|-----------------------------------|---------------------|--------------------|--------------------------------|
| Nd-YAG 2  | AMBER/7%                          | Nd-YAG (FHG)        | 266                | 3<                             |
|           |                                   | Nd-YAG (THG)        | 355                |                                |
|           |                                   | Nd-YAG (SHG)        | 532                |                                |
|           |                                   | Nd-YAG              | 1064               |                                |



Installation of the Laser Curtain to Transparent Panels The surface of the Laser Curtain is slightly adhesive. Firstly, place the Laser Curtain onto the panels, and then push out any air bubbles which may exist between he curtain and the panel. If any air bubbles still remain, the effectiveness of the curtain will not be reduced. After that, apply

3M multi-purpose adhesive (approx 1cm in width) to the upper and lower edges of both the curtain and the panel and then fasten.

